Physics, asked by Anonymous, 1 month ago

The amplitude of a wave represented by displacement equation
 \sf y =  \dfrac{1}{ \sqrt{a} } \: sin \omega t ± \dfrac{1}{ \sqrt{b} } cos \omega t
will be
 \sf(1) \:  \dfrac{a + b}{ab}
 \sf(2) \:  \dfrac{ \sqrt{a}  +  \sqrt{b} }{ab}
 \sf(3) \:  \dfrac{ \sqrt{a}  ± \sqrt{b} }{ab}
 \sf(4) \:   \sqrt{ \dfrac{a + b}{ab} }

Answers

Answered by BrainlyTwinklingstar
11

Given :

The amplitude of a wave represented by displacement equation  \sf y = \dfrac{1}{ \sqrt{a} } \: sin \omega t \pm \dfrac{1}{ \sqrt{b} } cos \omega t

To find :

Amplitude of the wave

Solution :

given that,

\sf y = \dfrac{1}{ \sqrt{a} } \: sin \omega t ± \dfrac{1}{ \sqrt{b} } cos \omega t

here we have two waves, If two or more waves reach a particle simultaneously the resultant displacement of the particle in the medium is the vectorial sum of displacement due to individual waves.

 \sf y = y_1 + y_2 \: ....

According to the question,

\sf  y_1  = \dfrac{1}{ \sqrt{a} } \: sin \omega t

\sf y_2 =  \dfrac{1}{ \sqrt{b} } cos \omega t

we know that,

If two vector y₁and y₂ of magnitude y₁and y₂ are acting at an angle θ then the magnitude of their resultant using parallelogram method of vector addition is

 \sf R =  \sqrt{ y_1 + y_2 +  2y_1y_2cos \theta}

By substituting all the values,

 \sf A =  \sqrt{  \bigg( \dfrac{1}{ \sqrt{a}  }\bigg) ^{2}   +\bigg( \dfrac{1}{ \sqrt{b}  }\bigg) ^{2}  +  2 \times  \dfrac{1}{ \sqrt{a} } \times  \dfrac{1}{ \sqrt{b} }  cos (90)}

 \sf A =  \sqrt{   \dfrac{1}{ a }   + \dfrac{1}{ b  }+  2 \times  \dfrac{1}{ \sqrt{a} } \times  \dfrac{1}{ \sqrt{b} }  (0)}

 \sf A =  \sqrt{   \dfrac{1}{ a }   + \dfrac{1}{ b  }}

 \sf A =  \sqrt{   \dfrac{b + a}{ ab }  }

thus, option (d) is correct.

Similar questions