Math, asked by Ramya852007, 4 months ago


The angle between the line joining the points (1, -2), (3, 2) and the line x + 2y – 7 = 0 is

Answers

Answered by mathdude500
5

Understanding the concept:-

  • To find the angle between the two lines, we have to find the slope of two lines and then use the formula of tan to find the angle between them.

─━─━─━─━─━─━─━─━─━─━─━─━─

Formula used :-

\tt \: 1. \:  Let  \: us  \: consider \:  two \:  lines \:  having \:  slope \:  \\ \tt \:  m_1 \:  and \:  m_2  \: and  \: let \:  \theta  \: be  \: the  \: angle  \: between \:  \\ \tt \:   two  \: lines,  \: then  \: angle \:  \theta \:  is  \: given  \: by \: \:  \:  \:  \:  \:  \:  \:  \:   \\  \tt \:  ⟼tan \theta \:  =  \bigg |\dfrac{m_1 \:  - m_2}{1 + m_1 \times m_2}  \bigg|  \:  \:  \:  \:  \:  \:  \:  \:  \:

\tt \:  2.  \: Let  \: us  \: consider  \: a  \: line  \: segment \:  joining  \: the  \\ \tt \:  points \:  A(x_1, y_1)  \: and  \: B(x_2, y_2),  \: then \:  slope \:  \\ \tt \:   of  \: line \:  joining \:  AB  \: is  \: given \:  by \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \tt \:  ⟼ \: m  \:  =  \: \dfrac{y_2 - y_1}{x_2 - x_1}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: </p><p>

\tt \:  3.  \: If  \: the  \: equation \:  of  \: line  \: is  \: ax + by + c = 0,  \:  \\ \tt \:  then  \: slope \:  is  \: given \:  by  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt \:  ⟼ \: m \:  =  \:  - \dfrac{coefficient \: of \: x}{coefficient \: of \: y}  =  - \dfrac{a}{b}  \:  \:  \:  \:  \:  \:  \:  \:  \: </p><p>

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{Solution :-  }}

\large\underline{\bold{❥︎Step :- 1 }}

\tt \:  ⟼slope \: of \: the \:  line \:  joining \:  the \:  \\ \tt \:   points  \: (1, -2),  \: (3, 2) \: is \: given \: by \:  \\ \tt \:  ⟼ \: m_1 \:  = \dfrac{2 - ( - 2)}{3 - 1}  = \dfrac{4}{2}  = 2

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

\tt \:  ⟼ \: slope \: of \: line \: x + 2y - 7 = 0 \: is \: given \: by \\ \tt \:  ⟼ \: m_2 \:  =  - \dfrac{1}{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 3 }}

\tt \:  ⟼ \: Let  \: \theta \: be \: the \: angle \: be \: the \: lines \: then \:  \\ \tt \:  ⟼ \: tan \theta \:  =   \bigg|\dfrac{2  + \dfrac{1}{2} }{1 + 2 \times \bigg( - \dfrac{1}{2}  \bigg)}  \bigg|  \\ \tt \:  ⟼ \: tan \theta \:  =  |\dfrac{ \frac{5}{2} }{1 - 1} |  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt \:  ⟼ \: tan \theta \:  =  \infty \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt\implies \: \theta \:  = \dfrac{\pi}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions