The angle between the two altitudes of a parallelogram through the vertex of an obtuse angle is 50º. The two adjacent angles of a parallelogram
Answers
Answered by
0
Step-by-step explanation:
Let ABCD be a parallelogram where BE and BF are the perpendiculars through the vertex B to the sides DC and AD respectively.
Let,
∠A=∠C=x
∠B=∠D=y
Now,
∠A+∠B=180∘ [Adjacent angles]
⇒x+∠ABF+∠FBE+∠EBC=180∘
⇒x+(90∘−x)+45∘+(90∘−x)=180∘
⇒x−x−x+90∘+90∘+45∘=180∘
⇒−x=180∘−225∘
⇒x=45∘
∴∠A=∠C=45∘
∠B=(90∘−45∘)+45∘+(90∘−45∘)=45∘
Similar questions