Math, asked by chavi7749, 7 months ago

The angle of depression of two ships from the top of a light house and on the same side of it are found to be 45° and 30° respectively. If the ships are 200m apart, find the height of the light house. ​

Answers

Answered by DrNykterstein
8

Imagine the given situation in the attached diagram which I have expressed very easily.

In ∆ABC,

⇒ tan θ = Perpendicular / Base

⇒ tan θ = AC / BC

Let, DC = x and height of lighthouse be h

so,

⇒ tan 30° = h / (BD + x)

⇒ 1 / √3 = h / (200 + x)

⇒ √3 h = 200 + x

x = 3 h - 200 ...(1)

Similarly, In ∆ADC,

⇒ tan θ = Perpendicular / Base

⇒ tan θ = AC / DC

⇒ tan 45° = h / x

⇒ 1 = h / x

x = h ...(2)

From (1) & (2),

⇒ h = √3h - 200

⇒ √3h - h = 200

⇒ h(√3 - 1) = 200

h = 200 / (3 - 1) m

Hence,

The height of the lighthouse is 200 / (3 - 1 ) m

Attachments:
Answered by rocky200216
12

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

  • The angle of depression of two ships from the top of a light house and on the same side of it are found to be 45° and 30° respectively .

  • The ships are 200 m apart .

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  • The height of the light house .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}}

☞︎︎︎ See the attachment diagram .

Let,

  • B & C be given ship's .

  • And AD be height of the light house.

Let,

  • \bf\blue{Height\:of\:the\:light\:house\:(AD)\:is\:\:h\:.} \\

✈︎ Now in DAC , we have

 \\ \bf{\implies\:\tan{45^{\degree}}\:=\:\dfrac{AD}{CD}\:} \\

 \\ \bf{\implies\:1\:=\:\dfrac{AD}{CD}\:} \\

 \\ \bf{\implies\:CD\:=\:AD\:} \\

 \\ \bf{\implies\:CD\:=\:h\:}----(1) \\

✈︎ Again in ABD , we have

 \\ \bf{\implies\:\tan{30^{\degree}}\:=\:\dfrac{AD}{BD}\:} \\

 \\ \bf{\implies\:\dfrac{1}{\sqrt{3}}\:=\:\dfrac{AD}{BC\:+\:CD}\:} \\

Where,

  • \bf\red{BC} = 200 m

 \\ \bf{\implies\:\dfrac{1}{\sqrt{3}}\:=\:\dfrac{h}{200\:+\:CD}\:} \\

☞︎︎︎ Putting the value of 'CD' from equation (1), we get

 \\ \bf{\implies\:\dfrac{1}{\sqrt{3}}\:=\:\dfrac{h}{200\:+\:h}\:} \\

 \\ \bf{\implies\:200\:+\:h\:=\:h\times{\sqrt{3}}\:} \\

 \\ \bf{\implies\:\sqrt{3}\:h\:-\:h\:=\:200\:} \\

 \\ \bf{\implies\:h\:(\sqrt{3}\:-\:1)\:=\:200\:} \\

 \\ \bf{\implies\:h\:=\:\dfrac{200}{\sqrt{3}\:-\:1}\:} \\

➪ By rationalization and simplification, we get

 \\ \bf\purple{\implies\:h\:=\:100\:(\sqrt{3}\:+\:1)\:m\:} \\

\huge\green\therefore The height of the light house is \bf\gray{100\:(\sqrt{3}\:+\:1)\:m\:} .

Attachments:
Similar questions