Math, asked by sahbaz10951, 7 months ago

The angle of elevation and depression of the top and bottom of a tower from the top of a building 60m high are 30°and 60°

Answers

Answered by amansharma264
8

CORRECT QUESTION.

The angle of elevation and depression of the

top and the bottom of the tower from the top

of the building 60m high are 30° and 60°

respectively.Find the difference between the

heights of the building and the tower and the

distance between them.

EXPLANATION.

 \sf : \implies \:  let \: we \: assume \: that \: ab \: be \: height \: of \: building. \\  \\ \sf : \implies \: let \: we \: assume \: that \: cd \: be \: the \: height \: of \: tower. \\  \\ \sf : \implies \: in \: right \:  \triangle \: abd \\  \\ \sf : \implies \:  \tan( \theta)  =  \frac{perpendicular}{base}  \\  \\ \sf : \implies \:  \tan(60 \degree) =  \frac{ab}{bd}

\sf : \implies \:  \sqrt{3}  =  \dfrac{60}{bd} \\  \\  \sf : \implies \: bd \:  =  \frac{60}{ \sqrt{3} }  \\  \\ \sf : \implies \: bd \:  =  \frac{60}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} } =  \frac{60 \sqrt{3} }{3}   \\  \\ \sf : \implies \: bd \:  = 20 \sqrt{3}

\sf : \implies \: in \: right \triangle \: ace \\  \\ \sf : \implies \:   \tan( \theta) =  \frac{perpendicular}{base}   \\  \\ \sf : \implies \:  \tan(30 \degree) =  \frac{ce}{ae} \\  \\   \sf : \implies \:  \tan(30 \degree)  =  \frac{ce}{bd}  \:  \: (ae \:  = bd) \\  \\ \sf : \implies \:  \frac{1}{ \sqrt{3} }  =  \frac{ce}{20 \sqrt{3} }  \\  \\ \sf : \implies \: ce \:  = 20

\sf : \implies \: height \: of \: tower \:  = ce \:  +  \: ed \:  = 60 + 20 = 80 \: cm

\sf : \implies \:  \orange{{1) =  \underline{difference \: between \: the \: heigh \: of \: tower \: and \: building \:  = 80 - 60 = 20 \: m}}} \\  \\ \sf : \implies \:  \orange{{ 2) = \underline{distance \: between \: the \: tower \: and \: building \:  = 20 \sqrt{3} }}}

Attachments:
Similar questions