Math, asked by sattwikig16, 16 days ago

The angle of elevation of a kite is 60⁰ and the length of the string is 40√3 then find the height of the kite from the grounds ?​

Answers

Answered by DeeznutzUwU
2

        \text{\huge \bf \underline{Answer:}}

        \text{In the attachment below:} \\

        \text{Angle of Elevation} = \angle{C} = 60^{\circ}

        \text{Length of string} = AC = 40\sqrt3 \: m

        \text{Height of the kite from the ground} = AB

        \text{We know that, }\text{Sin} = \dfrac{\text{Perpendicular}}{\text{Hypotenuse}}

\implies \: \text{Sin60} = \text{SinC}

        \text{We know that, }\text{Sin60} = \dfrac{\sqrt3}{2}

\implies \: \dfrac{\sqrt3}{2}= \dfrac{AB}{AC}

\implies \: \dfrac{\sqrt3}{2}= \dfrac{AB}{40\sqrt3}

\implies \: \sqrt3\times40\sqrt3 = AB\times2

\implies \: 120 = 2AB

\implies \: \dfrac{120}{2} = AB

\implies \: 60 \: m = AB

\implies \: \boxed{\boxed{\text{Height of the kite from the ground} = 60 \: m}}

Attachments:
Similar questions