Math, asked by Ramees1345, 11 months ago

The angle of elevation of an airplane from a point A on the ground is 60° after a flight of 30 seconds, the angle of elevation changes to 30°. If the plane is flying at a constant height of 3600 root3m, find the speed, in km/hour, of the plane.

Answers

Answered by Anonymous
13

Given :

  • The angle of elevation of a plane from a point A on ground is 60°
  • After 30 seconds of flight, the angle of elevation becomes 30°
  • Height at which the plane is flying = 3600√3 m.

To Find :

  • Speed of the plane in km/hr.

Solution :

Let's first consider Δ ABC.

Angle of elevation = \theta = 60°

BC = 3600√3 m.

Using,

tan \theta = \sf{\dfrac{Opposite\:side\:angle\:\theta}{Adjacent\:side\:to\:angle\:\theta}}

\theta = 60°

Opposite side = BC = 3600√3 m.

Adjacent side = AB

Block in the value,

\longrightarrow \sf{60\:^\circ\:=\:\dfrac{BC}{AB}}

\longrightarrow \sf{\sqrt{3}=}\sf{\dfrac{3600\:\sqrt{3}}{AB}}

\longrightarrow \sf{AB\:\sqrt{3}\:=\:3600\:\sqrt{3}}

\longrightarrow \sf{AB\:=\:\dfrac{3600\sqrt{3}}{\sqrt{{3}}}}

\longrightarrow \sf{AB\:=\:3600\:\:\:(1)}

Now, consider the Δ EDA.

Angle of elevation = 30° = \theta

ED = 3600√3 m.

Again we will use \sf{Tan\:\theta}

Opposite side = ED = 3600√3 m

Adjacent side = DA

Block in the values,

\longrightarrow \sf{30\:^\circ\:=\:\dfrac{ED}{DA}}

\longrightarrow \sf{\dfrac{1}{\sqrt{3}}=} \sf{\dfrac{3600\sqrt{3}}{DA}}

\longrightarrow \sf{DA=3600\:\sqrt{3}\:\times\:\sqrt{3}}

\longrightarrow \sf{DA=\:3600\:\times\:3}

\longrightarrow\sf{DA\:=\:10800}

Now, DA is the distance covered by the plane.

\longrightarrow \sf{DA=DB+AB}

\longrightarrow\sf{10800=DB+3600}

\longrightarrow \sf{10800-3600=DB}

\longrightarrow \sf{7200=DB}

° The plane travelled a distance of 7200 m.

We have the time taken by the plane to cover this distance.

Time = 30 second.

Now, we know the formula of speed.

Formula :

\sf{Speed\:=\dfrac{Distance}{Time}}

Block in the values,

\longrightarrow \sf{Speed\:=\:\dfrac{7200}{30}}

\longrightarrow \sf{Speed\:=\:240}

The speed of plane per second is 240 m/s.

We have to change the units.

In 1 hr we have 3600 seconds.

Multiply the speed of plane per second by the total number of second in one hour.

\longrightarrow \sf{3600\:\times\:240}

\longrightarrow \sf{864000}

° Plane covers 864000 m in 3600 seconds i.e in 1 hr.

1 km = 1000 m.

° \sf{\dfrac{864000}{1000}}

\longrightarrow \sf{864\:km}

° \sf{Speed\:=\:\dfrac{Distance}{Time}}

\longrightarrow\sf{Speed=\dfrac{864}{1}}

\longrightarrow \sf{Speed\:=\:864\:km/hr}

\large{\boxed{\sf{\red{Speed\:of\:plane\:in\:km\:/hr\:=\:864\:km/hr}}}}

Attachments:
Similar questions