Math, asked by amanmahir01, 8 months ago

The angle of elevation of an areoplane from a point on the ground is 45o.

After flight for 15 seconds the elevation changes to 30o. If the areoplane is flying

at a height of 3000 m. Find the speed of the areoplane.​

Answers

Answered by Skyllen
70

Answer➸ 720(√3-1)

Explanation Refer to attachment

Extra information:-

sin²ϑ + cos²ϑ = 1

sin²ϑ - tan²ϑ = 1

cosec²ϑ = 1 + cos²ϑ

Trigonometric tabel:

\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &   \bf{0}^{ \circ} &  \bf{30}^{ \circ} &   \bf{45}^{ \circ}  &  \bf{60}^{ \circ} &   \bf{90}^{ \circ}  \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\  \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\  \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 &  \sqrt{3}  & \rm Not \: De fined \\  \\ \rm cosec A &  \rm Not \: De fined & 2&  \sqrt{2}  & \dfrac{2}{ \sqrt{3} } &1 \\  \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }&  \sqrt{2}  & 2 & \rm Not \: De fined \\  \\ \rm cot A & \rm Not \: De fined &  \sqrt{3} & 1  &  \dfrac{1}{ \sqrt{3} } & 0 \end{array}

Attachments:
Similar questions