Math, asked by pari1548, 2 months ago

the angle of elevation of the top of a hill at the foot of a tower is 60° and the angle of depression from the top of the tower of the foot of the hill is 30°. If the tower is 50 metre high, find the height of the hill.​

Answers

Answered by vaibhavitamboli21
1

Answer:

Let AB be the tower and CD be the hill. Then, ∠ACB=30o,∠CAD=60o and AB=50 m.

Let CD=x m

In right △BAC, we have,

cot30o=ABAC

3=50AC

AC=503 m

In right △ACD, we have,

tan60o=ACCD

3=503x

x=50×3=150 m

Therefore, the height of the hill is 150 m.

Answered by mathdude500
3

\large\underline{\bold{Solution-}}

Let AB be the tower and CD be the hill.

So, 

  • ∠ACB = 30°

  • ∠CAD=60° 

and 

  • height of tower, AB = 50 m.

  • Let height of the hill, CD = 'x' meter.

Now,

  • In right △BAC,

we have,

 \sf \: tan30 \degree \:  =  \: \dfrac{AB}{AC}

 \sf \: \dfrac{1}{ \sqrt{3} }  = \dfrac{50}{AC}

 \therefore \bf \: AC \:  =  \: 50 \sqrt{3}  \: m

Now,

  • In right △ACD,

we have,

 \sf \: tan60 \degree \:  =  \: \dfrac{CD}{AC}

 \sf \:  \sqrt{3}  = \dfrac{x}{50 \sqrt{3} }  \:  \:  \:  \:  \:  \:  \: ( \because \: AC \:  =  \: 50 \sqrt{3} )

 \therefore  \bf\: x = 50 \sqrt{3}  \times  \sqrt{ 3}  = 150 \: m.

Therefore, the height of the hill, CD is 150 m.

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Attachments:
Similar questions