Math, asked by anagha001, 8 months ago

the angle of elevation of the top of a hill is 30° from a point on the ground. on walking 1 km walking towards the hill, angle is found to be 45°. calculate the height of the hill​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
14

\huge\sf\pink{Answer}

☞ Height of the hill is 1.37 km

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ Angle of elevation at the top of a hill is 30° from a point on the ground

✭ On walking 1 km towards the hill,the angle of elevation becomes 45°

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ The height of the hill?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

So here In ∆ACB

\sf tan \ theta = \dfrac{Opposite}{Adjacent}

\sf tan \ 45^{\circ} = \dfrac{AB}{x}

«« \sf tan \ 45^{\circ} = 1 »»

\sf 1 = \dfrac{AB}{x}

\sf x = AB \:\:\: -eq(1)

In ∆ADC

\sf tan \ theta = \dfrac{Opposite}{Adjacent}

\sf tan \ 30^{\circ} = \dfrac{AB}{DB}

\sf tan \ 30^{\circ} = \dfrac{AB}{1+x}

«« \sf tan \ 30^{\circ} = \dfrac{1}{\sqrt{3}} »»

\sf \dfrac{1}{\sqrt{3}} = \dfrac{AB}{1+x}

\sf 1(1+x) = AB(\sqrt{3})

\sf 1+x = AB\sqrt{3}

\sf 1+AB = AB \sqrt{3} \:\:\ \because eq(1)

\sf 1 = AB\sqrt{3} - AB

\sf 1 = AB(\sqrt{3}-1)

\sf \dfrac{1}{\sqrt{3}-1} = AB

\sf \dfrac{1}{1.732-1} = AB

\sf AB = \dfrac{1}{0.732}

\sf \orange{AB = 1.37 \ km}

\sf \star\: Diagram \: \star

\setlength{\unitlength}{1cm}\begin{picture}(20,15)\thicklines\qbezier(1,1)(2,1)(7,1)\qbezier(7,1)(7,1)(7,6)\qbezier(7,6)(7,6)(1,1)\qbezier(7,6)(7,6)(4,1)\put(7,6.3){\large\sf A}\put(7,0.5){\large\sf B}\put(4,0.5){\large\sf C}\put(1,0.5){\large\sf D}\put(1.7,1.2){$ \sf 30^{\circ} $}\put(2,0){\sf 1 km}\put(4.5,1.2){$\sf 45^{\circ}$}\put(5.5,0){\sf x }\end{picture}

━━━━━━━━━━━━━━━━━━

Similar questions