Math, asked by hayasachin, 4 months ago

The angle of elevation of the top of a
mountain from the top of a 100 m high
hill is 30° and from the base of the hill
is 45°. Find the height of the mountain.​

Answers

Answered by Anonymous
16

Solution:-

:- Take ABC

 \rm \to \tan45 \degree =  \dfrac{BC}{AB}

 \rm \to  \: 1 =  \dfrac{h}{x}

 \rm \to \: h = x

:- Take EDC

 \rm \to \:  \tan30 \degree =  \dfrac{CD}{ED}

 \rm \to \dfrac{1}{ \sqrt{3} }  =  \dfrac{h - 100m}{x}

Now put the value h = x

\rm \to \dfrac{1}{ \sqrt{3} }  =  \dfrac{h - 100m}{h}

Now using cross multiplication

 \rm \to \: h =  \sqrt{3} (h - 100m)

 \rm \to \:h =  \sqrt{3} h - 100 \sqrt{3}

 \rm \to \: 100 \sqrt{3}  =  \sqrt{3} h - h

 \rm \to \: 100 \sqrt{3}  = ( \sqrt{3}  - 1)h

 \rm \to \:  \dfrac{100 \sqrt{3} }{ \sqrt{3}  - 1}  = h

Now take 3 = 1.732

 \rm \to \: h =  \dfrac{100 \times 1.732}{1.732 - 1}

 \rm \to \: h =  \dfrac{173}{0.732} cm

 \rm \to \: h \:  = 236.9 \approx237m

High of mountain is 237 m

Attachments:
Similar questions