Math, asked by rafiakumari, 10 months ago

the angle of elevation of the top of a pillar point c on the ground is 30⁰and on walking 100m towards the pillar the angle becomes 60⁰. find the height of the pillar and its distance from point c

Answers

Answered by BrainlyConqueror0901
14

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:pillar=50\sqrt{3}\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies Angle \: of \: elevation( \theta) = 30 \degree \\  \\ \tt:\implies Angle \: of \: elevation( \theta_{o} ) = 60 \degree \\  \\  \tt:  \implies Distance \: DC = 100 \: m \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Height \: of \: pillar =?

• According to given question :

 \tt \circ \: Let \: height \: of \: pillar \:be \: x   \\  \\ \bold{In \: \triangle \: ABC :  } \\ \tt: \implies tan \:  \theta =  \frac{p}{b}  \\  \\ \tt: \implies tan \:30 \degree =  \frac{AB}{BC}  \\  \\ \tt: \implies  \frac{1}{ \sqrt{3} }  =  \frac{x}{BD + DC}  \\  \\ \tt: \implies  \frac{1}{ \sqrt{3} }  =  \frac{x}{BD+ 100}  \\   \\ \tt: \implies BD+ 100 =  \sqrt{3} x \\  \\ \tt: \implies BD =  \sqrt{3} x - 100 -  -  -  -  -  (1) \\  \\  \bold{In \:  \triangle \: ABD: } \\ \tt: \implies tan \:  \theta_{o} =  \frac{p}{b}  \\  \\ \tt: \implies tan \: 60 \degree =  \frac{AB}{BD}  \\  \\ \tt: \implies  \sqrt{3}  =  \frac{x}{ \sqrt{3} x - 100}  \\  \\ \tt: \implies 3x - 100 \sqrt{3}  = x \\  \\ \tt: \implies 3x - x = 100 \sqrt{3}  \\  \\ \tt: \implies 2x = 100 \sqrt{3}  \\  \\ \tt: \implies x =  \frac{100 \sqrt{3} }{2}  \\  \\  \green{\tt: \implies x = 50 \sqrt{3}  \: m} \\  \\ \green{\tt \therefore Height \: of \: pillar \: is \: 50 \sqrt{3}  \: m}

Similar questions