Math, asked by harshitasharda2004, 4 months ago


The angle of elevation of the top of a tower
OP from a point a on the ground is 45°.
If
height of the tower is 6 cm then find
the area of the triangle OPQ.

Answers

Answered by Anonymous
88

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {PO = height}

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {OQ = base}

Given

  • The angle of elevation of the top of a tower
  • OP from a point a on the ground is 45°.
  • Height of the tower is 6cm.

To find

  • Area of the triangle OPQ.

Solution

  • We have the angle of elevation = 45°.

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{We\: know\: that}}}

  • \sf{tan\theta = \dfrac{Perpendicular}{Base}}

Therefore,

\tt:\implies\: \: \: \: \: \: \: \: {tan45^{\circ} = \dfrac{PO}{OQ}}

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{tan45^{\circ} = 1}}}

\tt:\implies\: \: \: \: \: \: \: \: {1 = \dfrac{6}{OQ}}

\bf:\implies\: \: \: \: \: \: \: \: {OQ = 6}

  • We get, OQ = 6cm

Now,

\large{\boxed{\boxed{\sf{Area_{Triangle} = \dfrac{1}{2} \times b \times h}}}}

Here,

  • b = base = 6cm
  • h = height = 6cm

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{Putting\: the\: values}}}

\tt:\implies\: \: \: \: \: \: \: \: {Area = \dfrac{1}{\cancel{2}} \times \cancel{6} \times 6}

\tt:\implies\: \: \: \: \: \: \: \: {Area = 3 \times 6}

\tt:\implies\: \: \: \: \: \: \: \: {Area = 18}

Hence,

  • Area of the triangle is 18cm².

━━━━━━━━━━━━━━━━━━━━━━

Attachments:

VishalSharma01: Awesome :)
Answered by Anonymous
80

Question :

The angle of elevation of top of a tower OP from a point on the ground is 45° .If height of tower is 6cm then find the area of the triangle OPQ.

Given :

  • Angle of elevation = 45°
  • OP = (Height) = 6cm

To find :

  • Area of triangle

Solution :

To find the area of triangle we need to first find the base of the triangle.

So,

 \boxed {\tt tan\theta = \dfrac{Perpendicular}{Base} }

 \boxed {\underline{\bf tan45° = 1 }}

 :\implies \tt {tan45° = \dfrac{OP}{OQ}}

 : \implies \tt { 1 = \dfrac {6}{OQ}}

 : \implies \tt {OQ= 6cm }

 \boxed {\bf Area \: of \: triangle = \dfrac {1}{2} \times base \times height }

 : \implies \tt { Area \: = \dfrac {1}{2} \times 6 \times 6 }

 : \implies \tt {Area = 18 cm^2 }

Attachments:

VishalSharma01: Nice :)
Similar questions