Math, asked by Karunarawat, 5 months ago


The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Answers

Answered by StarIord
11

\large{\red{\underline{\underline{\textsf{\maltese\:{\red{Given :}}}}}}}

\sf{The \:angles \:in \: a \: quadrilateral \: are \:in \:the \: ratio} \sf{ 3:5:9:13}

\large{\red{\underline{\underline{\textsf{\maltese\:{\red{To\:Find :}}}}}}}

\sf{The \:measure \:of \:the \:angles}

\large{\red{\underline{\underline{\textsf{\maltese\:{\red{Concept}}}}}}}

\sf{All \:the \:angles \:in \:a \: quadrilateral \:add} \sf{upto \:360^0}

\large{\red{\underline{\underline{\textsf{\maltese\:{\red{Solution}}}}}}}

\sf{Let \:the \:angles \:be \:3x, 5x, 9x \: and \:13x}

\sf{So,}

\sf{ 3x + 5x + 9x + 13x = 360^0}

\sf{30x = 360^0}

\sf{x = \dfrac {360^0}{30}}

\sf{x = 12^0}

\sf{So \:the \:angles \:are:}

\sf{3x = 3 \times 12 = 36^0}

\sf{5x = 5 \times 12 = 60^0}

\sf{9x = 9 \times 12 = 108^0}

\sf{13x = 13 \times 12 = 156^0}


Anonymous: Use [tex] \degree [/tex].
StarIord: Thanks, for the advise dude :)
Anonymous: welcome pal
Answered by Anonymous
7

Let, angles of the quadrilateral be 13x, 9x, 5x and 3x.

We know, sum of interior angles of a quadrilateral = 360°

∴ 13x + 9x + 5x + 3x = 360°

⇒ 30x = 360°

⇒ x = 360°/30

 \boxed{x = 12°}.

Putting the values,

Angle 1: 13x = 13(12°) = 156°

Angle 2: 9x = 9(12°) = 108°

Angle 3: 5x = 5(12°) = 60°

Angle 4: 3x = 3(12°) = 36°.

(After adding the angle measurements, you'll get 360° - verification).

More about a quadrilateral and it's types:-

1. Quadrilateral (meaning, 4 sides) is a plane figure having 4 sides. All the interior angles make 360°. This can be proved by breaking it into two triangles.

2. Quadrilaterals are of several types, viz., Rectangle, Square, Kite, Rhombus, Parallelogram, Cyclic, Trapezoid, etc.

Similar questions