Math, asked by yaseen7732, 2 months ago

The angles of a triangle are in the ratio 2:3:7. The length of the smallest side is 15 cms. The radius of the
circumcircle of the triangle in cms is:​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let R be radius of circumcircle to triangle.

↝ As it is given that angles of a triangle are in the ratio 2 : 3 : 7.

↝ So, Let us assume a triangle ABC such that

\rm :\longmapsto\: \angle \: A = 2x

\rm :\longmapsto\: \angle \: B = 3x

\rm :\longmapsto\: \angle \: C = 7x

We know,

↝ Sum of all interior angles of a triangle is supplementary.

\rm :\longmapsto\: \angle \:A + \angle \:B + \angle \:C = 180 \degree

\rm :\longmapsto\: 2x + 3x + 7x= 180 \degree

\rm :\longmapsto\:12x= 180 \degree

\rm :\longmapsto\:x= 15\degree

↝ Hence, angles of triangle ABC are as

\rm :\longmapsto\: \angle \: A = 2 \times 15 = 30 \degree

\rm :\longmapsto\: \angle \: B = 3 \times 15 = 45 \degree

\rm :\longmapsto\: \angle \: C = 7 \times 15 = 105\degree

Now,

Let sides of a triangle ABC is represented as

↝ AB = c

↝ BC = a

↝ CA = b

Now, Since,

\rm :\longmapsto\: \angle \: A =  30 \degree \: is \: smallest \: angle \: in \:  \triangle \: ABC

We know,

↝ Side opposite to smallest angle is always smallest.

↝ BC = a = 15 cm

We know,

Sine Law

\rm :\longmapsto\:\dfrac{a}{sinA}  = \dfrac{b}{sinB}  = \dfrac{c}{sinC}  = 2R

\rm :\longmapsto\:\dfrac{a}{sinA}= 2R

\rm :\longmapsto\:\dfrac{15}{sin30 \degree}= 2R

\rm :\longmapsto\:\dfrac{15}{ \:  \:  \dfrac{1}{2} \:  \:  }= 2R

\rm :\longmapsto\:2R = 2 \times 15

\bf\implies \:R = 15 \: cm

Additional Information :-

Projection Formula

\rm :\longmapsto\:a = b \: cosC + c \: cosB

\rm :\longmapsto\:b = a \: cosC + c \: cosA

\rm :\longmapsto\:c = a \: cosB + b \: cosA

Cosine Law

\rm :\longmapsto\:cosA = \dfrac{ {b}^{2}  +  {c}^{2}  -  {a}^{2} }{2bc}

\rm :\longmapsto\:cosB = \dfrac{ {c}^{2}  +  {a}^{2}  -  {b}^{2} }{2ac}

\rm :\longmapsto\:cosC = \dfrac{ {b}^{2}  +  {a}^{2}  -  {c}^{2} }{2ab}

Attachments:
Similar questions