Math, asked by dakshcaleb, 10 days ago

the angles of a triangles are in ratio of 1 2 3 find the angles

Answers

Answered by divyapakhare468
1

To find : angles of triangle .

Given ratio of angles : 1 : 2 :3

Solution :

  • Let , three angles of triangle of be 1x , 2x, 3x .
  • Then according to angle sum property of triangle sum of all three angles of triangle is 180° .
  • Therefore , according to angle sum property we have ,

        1x + 2x+ 3x = 180 \\6x  =180\\x = 30

  • Angles of triangle  are : 1x = 1\times 30 =30°

                                                2x = 2\times 30 =60°

                                                3x = 3\times 30 =90°

Hence , angles of triangle are  30° ,60° ,90°  .

Answered by BrainlySparrow
2

Step-by-step explanation:

Given :

  • The angles of a triangle are in the ratio 1 : 2 : 3.

To Find :

  • The angles.

Solution :

Let the common ratio x.

✴️ Let's assume that,

  • 1st angle = x
  • 2nd angle = 2x
  • 3rd angle = 3x

We know that,

Sum of all the angles of a triangle is 180°.

 \\  \sf \longrightarrow \: x + 2x + 3x =  {180}^{ \circ}  \\  \\ \sf \longrightarrow \: 3x + 3x =  {180}^{ \circ}  \\  \\ \sf \longrightarrow \: 6x=  {180}^{ \circ}  \\  \\ \sf \longrightarrow \: x =   \dfrac{180}{6} \\  \\ \sf \longrightarrow \: x =   \dfrac{ \cancel{180}}{ \not6} \\  \\  \red{\sf \longrightarrow \:  \boxed{\bf x =    {30}^{ \circ} } \:  \bigstar}

~Now, finding angles :

1st angle :

\longrightarrow

\longrightarrow 30°

2nd angle :

\longrightarrow 2x°

\longrightarrow 2(30)°

\longrightarrow 60°

3rd angle :

\longrightarrow 3x°

\longrightarrow 3(30)°

\longrightarrow 90°

Hence, the angles of a triangle are 30°, 60° and 90°.

Similar questions