Math, asked by bababh, 9 months ago

The angles of elevation of the top of a tower from two points distant s and t from its foot are complementary. Then the height of the tower is:

(A) st                                                                                    

(B) s2t2

(C) √st                                                                 

(D) s/t

Answers

Answered by Anonymous
3

Answer:

(c) \sqrt{st}

Step-by-step explanation:

Let the height of tower be h.

Construct figure according to given information as,

 \tan( \theta )  =  \frac{ac}{bc}

 =  >  \tan( \theta )  =  \frac{h}{s}...........(i)

 \tan(90 -  \theta )  =  \frac{ac}{pc}

 =  >  \cot( \theta )  =  \frac{h}{t} ......(ii)

MULTIPLYING, EQUATION (i) and (ii), WE GET

 \tan( \theta )  \times  \cos( \theta )  =  \frac{h}{s}  \times  \frac{h}{t}

 =  > 1 =  \frac{ {h}^{2} }{st}

 =  > h =  \sqrt{st}

hope it's helps you ❤️

Answered by Anonymous
0

 \sf \: Solution -

{ \underline{ \underline {\sf \: Given:-}}}

\sf :\implies \: Angle \: of \: elevation \: = 30^{o}

Let

\sf : \implies \: Height \: of \: tower \: = h \: \: \: and \: \: distance \: = \: x \:</p><p>

\sf \implies \: \tan30 \degree = \dfrac{h}{x} \: \: \: \: \: \: \: where \: \: tan30 \degree = \dfrac{1}{ \sqrt{3} }</p><p>

By putting the value we get,

\sf \implies \: \dfrac{1}{ \sqrt{3} } = \dfrac{h}{x}

Now height is doubled = 2h

\sf \implies \: \tan\theta = \dfrac{2h}{x}

Its given

\sf \implies \: \dfrac{h}{x} = \dfrac{1}{ \sqrt{3} } \: \: \: so \: put \: the \: value \:</p><p>

we get,

\sf \implies \: \tan\theta = \dfrac{2}{ \sqrt{3} }

When Θ is double

\sf \implies \: \theta = 30 \degree \: \implies2 \theta = 2 \times 30 = 60</p><p>

now we know that

\sf \implies \: \tan60 \degree = \sqrt{3} \implies \sqrt{3} \not = \dfrac{2}{ \sqrt{3} }

So our conclusion is when height is double Θ will be not doubled.

Similar questions