Math, asked by pnvsuhaskumar2003, 1 month ago


The anti-derivative of cos5x +cos4x/1-2cos3x​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

The given integral is

\rm :\longmapsto\:\displaystyle\int\rm \dfrac{cos5x + cos4x}{1 - 2cos3x}  \: dx

The identities used to solve this integral are as follow,

 \boxed{ \sf{ \: cosx + cosy = 2cos\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg)}}

 \boxed{ \sf{2sinxcosx = sin2x}}

 \boxed{ \sf{ \: sinx  - siny = 2cos\bigg(\dfrac{x + y}{2} \bigg)sin\bigg(\dfrac{x - y}{2} \bigg)}}

 \boxed{ \sf{2cosxcosy = cos(x + y) + cos(x - y)}}

 \boxed{ \sf{\displaystyle\int\rm cosx = sinx + c}}

Let's evaluate the problem now!!!

\rm :\longmapsto\:\displaystyle\int\rm \dfrac{cos5x + cos4x}{1 - 2cos3x}  \: dx

\rm \:  =  \: \displaystyle\int\rm \dfrac{2cos\bigg(\dfrac{5x + 4x}{2} \bigg)cos\bigg(\dfrac{5x - 4x}{2} \bigg)}{1 - 2cos3x} dx

On multiply and divide by sin3x, we get

\rm \:  =  \: \displaystyle\int\rm \dfrac{sin3x  \times \: 2cos\bigg(\dfrac{9x}{2} \bigg)cos\bigg(\dfrac{x}{2} \bigg)}{sin3x(1 - 2cos3x)} dx

\rm \:  =  \:\displaystyle\int\rm  \dfrac{2sin\bigg(\dfrac{3x}{2} \bigg)cos\bigg(\dfrac{3x}{2} \bigg)  \times \: 2cos\bigg(\dfrac{9x}{2} \bigg)cos\bigg(\dfrac{x}{2} \bigg)}{sin3x- 2sin3xcos3x}dx

\rm \:  =  \:\displaystyle\int\rm  \dfrac{4sin\bigg(\dfrac{3x}{2} \bigg)cos\bigg(\dfrac{3x}{2} \bigg)  cos\bigg(\dfrac{9x}{2} \bigg)cos\bigg(\dfrac{x}{2} \bigg)}{sin3x- sin6x}dx

\rm \:  =  \:\displaystyle\int\rm  \dfrac{4sin\bigg(\dfrac{3x}{2} \bigg)cos\bigg(\dfrac{3x}{2} \bigg)  cos\bigg(\dfrac{9x}{2} \bigg)cos\bigg(\dfrac{x}{2} \bigg)}{2cos\bigg(\dfrac{3x + 6x}{2} \bigg)sin\bigg(\dfrac{3x - 6x}{2} \bigg)}dx

\rm \:  =  \:\displaystyle\int\rm  \dfrac{2sin\bigg(\dfrac{3x}{2} \bigg)cos\bigg(\dfrac{3x}{2} \bigg)   \cancel{cos\bigg(\dfrac{9x}{2} \bigg)}cos\bigg(\dfrac{x}{2} \bigg)}{ \cancel{cos\bigg(\dfrac{9x}{2} \bigg)} \: sin\bigg(\dfrac{- 3x}{2} \bigg)}dx

\rm \:  =  \:\displaystyle\int\rm  \dfrac{2 \:  \cancel{sin\bigg(\dfrac{3x}{2} \bigg)} \: cos\bigg(\dfrac{3x}{2} \bigg)   cos\bigg(\dfrac{x}{2} \bigg)}{  \:  -  \:  \cancel{sin\bigg(\dfrac{3x}{2} \bigg)}}dx

\rm \:  =  \:  - \displaystyle\int\rm \: 2 cos\bigg(\dfrac{3x}{2} \bigg)cos\bigg(\dfrac{x}{2} \bigg) \: dx

\rm \:  =  \:  - \displaystyle\int\rm  \bigg \{cos\bigg(\dfrac{3x}{2} + \dfrac{x}{2}  \bigg) + cos\bigg(\dfrac{3x}{2} -  \dfrac{x}{2} \bigg) \bigg \}dx

\rm \:  =  \:  - \displaystyle\int\rm (cos2x + cosx)dx

\rm \:  =  \:  -  \: \dfrac{sin2x}{2}  + sinx + c

Hence,

 \purple{\boxed{ \bf{ \:   \displaystyle\int\bf \dfrac{cos5x + cos4x}{1 - 2cos3x}dx\:=-\: \dfrac{sin2x}{2}  + sinx + c}}}

Additional Information :-

 \boxed{ \sf{\displaystyle\int\rm sinx =  - cosx + c}}

 \boxed{ \sf{\displaystyle\int\rm tanx =  - logcosx + c}}

 \boxed{ \sf{\displaystyle\int\rm tanx =  logsecx + c}}

 \boxed{ \sf{\displaystyle\int\rm cotx =  logsinx + c}}

 \boxed{ \sf{\displaystyle\int\rm cosecx =  log(cosecx - cotx) + c}}

 \boxed{ \sf{\displaystyle\int\rm secx =  log(secx  +  tanx) + c}}

 \boxed{ \sf{\displaystyle\int\rm  {sec}^{2}x = tanx  + c}}

 \boxed{ \sf{\displaystyle\int\rm  {cosec}^{2}x = -  \:  cotx  + c}}

Similar questions