Math, asked by hadelschool9766, 1 year ago

The anti derivative of \int \biggr\lgroup{\sqrt{x}+\frac{1}{\sqrt{x}}\biggr\rgroup \, dx equals,
(A) \frac 13 x^{\frac 13}+ 2x^{\frac 12} +C
(B)  \frac 23 x^{\frac 23}+ \frac 12 x^{2} +C
(C)  \frac 23 x^{\frac 32}+ 2x^{\frac 12} +C
(D)  \frac 32 x^{\frac 32}+ \frac 12 x^{\frac 12} + C

Answers

Answered by MaheswariS
0

Answer:

option (c) is correct

Step-by-step explanation:

Formula used:

\int{x^n}\:dx=\frac{x^{n+1}}{n+1}+c

Now,

\int[\sqrt{x}+\frac{1}{\sqrt{x}}]\:dx\\\\=\int[x^{\frac{1}{2}}+x^\frac{-1}{2}}]\:dx\\\\=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c\\\\=\frac{2}{3}x^{\frac{3}{2}}+2x^{\frac{1}{2}}+c\\\\=\frac{2}{3}x\sqrt{x}+2\sqrt{x}+c

Similar questions