Math, asked by siddhikayadav2008, 9 months ago

the are of a rectangle is 12 7/4m2. if the measurement of its length is 7/12 m then find its breath. also find its parameter. ​

Answers

Answered by BrainlyRaaz
44

Given :

  • The area of a rectangle is 12(7/4) m².

  • The measurement of its length is 7/12 m.

To find :

  • Breadth of the rectangle =?

  • Perimeter of the rectangle =?

Step-by-step explanation :

We know that,

Area of Rectangle = length x breadth

Substituting the values in the above formula, we get,

12(7/4) = 7/12 x breadth

55/4 = 7/12 x breadth

breadth = (55/4) ÷ (7/12)

breadth = 55/4 × 12/7

breadth = 660/28

breadth = 165/7

Therefore, The breadth of the rectangle = 165/7 m.

Now,

We know that,

Perimeter of the rectangle = 2( length + breadth)

Substituting the values in the above formula, we get,

= 2 ( 7/12 + 165/7)

= 2(49 + 1980/84)

= 2(2029/84)

= 2 × 24.15

= 48.3

Therefore, Perimeter of the rectangle = 48.3 m (approx)

Answered by TheSentinel
24

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm\therefore{\red{\underline{\blue{Perimeter \  of \  the \  rectangle : 48.3 m (approx)}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{The \  area \ of  \ rectangle  : 12  ( \frac{7}{4} )m^2.}

\rm{The \ measurement \ of \  its \ length \ is \ \frac{7}{12 } m. }

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{Breadth \  of \  the \ rectangle}

\rm{Perimeter \ of \  the \ rectangle}

_________________________________________

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Solution:}}}}}}}} \\ \\

\rm{We \  know \  that, }

\rm\boxed{Area \ of \ Rectangle \  = length x breadth }

\rm\therefore{12 \frac{7}{4} = \frac{7}{12} \times breadth } \\ \\

\rm\therefore{\frac{55}{4 } \ = \ \frac{7}{12} \times breadth }

\rm\therefore{breadth = \frac{55}{4} \div \frac{7}{12}} \\ \\

\rm\therefore{breadth = \frac{55}{4 } \  \times \  \frac{12}{7}} \\ \\

\rm\therefore{breadth = \frac{660}{28}} \\ \\

\rm\therefore{\green{\boxed{ breadth \  = \  \frac{165}{7}} }} \\ \\

\rm{Now, }

\rm{\boxed{Perimeter \  of \ the \  rectangle = 2( length + breadth) }} \\ \\

\rm\therefore{perimeter \ = \ 2 \times ( \frac{7}{12} + \frac{165}{7})} \\ \\

\rm\therefore{perimeter \ = \ 2 \times ( 49 + \frac{1980}=84)} \\ \\

\rm\therefore{perimeter \ = \ 2 \times ( \frac{2029}{84})} \\ \\

\rm\therefore{perimeter \ = \ 2 \times 24.15} \\ \\

\rm\therefore{perimeter \ = \ 48.3} \\ \\

\rm\therefore{\red{\underline{\blue{Perimeter \  of \  the \  rectangle : 48.3 m (approx)}}}}

_________________________________________

\rm\orange{Hope \ it \ helps \  :))}


BrainlyRaaz: Perfect ✔️
Similar questions