Math, asked by Anonymous, 6 months ago

the area bounded by the curves y = log_e x , y = log_e |x|_1, y = | log_e x| and y = |log_e|x|| is​

Answers

Answered by Anonymous
79

firstly draw them and combine on a single plane.

( refer to Attachment)

now, apply L'hôpital's rule,

\displaystyle\sf \lim_{x\to 0} ( x \ log\ x - x)

\displaystyle\sf = \lim_{x\to 0} \left( \dfrac{log \ x-1}{\dfrac{1}{x}} \right) \:\; \left( \dfrac{\infty}{\infty} \right)

\displaystyle\sf =  \lim_{x\to 0} \dfrac{1/x}{-1/x^2} =  \lim_{x\to 0} (-x) = 0

area \displaystyle\sf = 4 \left| \int\limits_0^1 ( log_e \ x) dx \right|

\displaystyle\sf = 4 \left| \Bigg[ x \ log \ x-x \Bigg]^1_0 \right|

\displaystyle\sf = 4 \left| 1 - \lim_{x\to 0} ( x \ log \ x-x) \right|

\sf = 4 |1-0|

\sf = 4|1|

we know that

\large\sf { |x| = \begin{cases} \sf x \;\text{if}\; x \geq 0 \\\\ \sf -x\; \text{if}\; x < 0 \end{cases} }

and here \sf x > 0

\sf = 4 \times 1

\sf = 4 \ sq. \ units

Attachments:
Similar questions