Math, asked by yashvardhanborude4, 1 year ago

The area of a circle with centre O is 308 cm2 . Find the perimeter of the
shaded semicircle from the following figure.

1}72 cm
2}58 cm
3}108 cm
4}36√2 cm

Attachments:

Answers

Answered by guptasingh4564
3

The perimeter of shaded semicircle is 22\sqrt{2} \ m

Step-by-step explanation:

Given,

Area of the circle=308m^{2}

We know area of a circle is given \pi r^{2}

So,

\pi r^{2}=308

r^{2}=\frac{308}{\pi}

r=\sqrt{98}

r=7\sqrt{2} \ m

∴Perimeter of the shaded semicircle is equal to perimeter of half of the circle.

So,

Perimeter of the shaded semicircle=\pi r

                                                          =\pi \times 7\sqrt{2}

                                                         =22\sqrt{2} \ m

So, The perimeter of shaded semicircle is 22\sqrt{2} \ m

Answered by akatepallewar
22

Answer:

36\sqrt{2}

Step-by-step explanation:

Area of Circle = πr^{2}

∴ πr^{2} = 308cm^{2}

\frac{22}{7} x r^{2} = 308cm^{2}

r^{2} = 7\sqrt{2}

Perimeter of Semi-Circle =  πr + d (r = 7\sqrt{2}, d = 2r = 14\sqrt{2})

∴ πr + d = \frac{22 *7\sqrt{2}  }{7} + 14\sqrt{2}  (7 and 7 get cancelled)

∴ 22\sqrt{2} + 14\sqrt{2} = 36\sqrt{2}

Similar questions