Chemistry, asked by Anonymous, 4 months ago

The area of a ∆ is1178 cm². The ratio of the base to corresponding altitude is 3:4 . Find the altitude .
Plz.. give right answer only... ​

Answers

Answered by Anonymous
37

Correct Question:

The area of a triangle is 1176 cm². The ratio of the base to corresponding altitude is 3:4. Find the altitude.

Given:

  • Area of triangle = 1176 cm²

To Find:

  • Altitude

Solution:

Let the base be 3x and altitude = 4x.

According to the question:

★ Area of triangle = 1/2 base × height

→ 1176 = 1/2 × 3x × 4x

→ 1176 = 12x²/2

→ 1176 × 2/12 = x²

→ 196 = x²

→ x = 14

Therefore,

  • Altitude:- 4x = 14 × 4 = 56

Hence,

  • Altitude = 56
Answered by Anonymous
43

Correct Question

  • The area of a triangle is 1176 cm². The ratio of the base to corresponding altitude is 3:4. Find the altitude.

Given

  • Area of the given triangle is 1176 cm².
  • Ratio of its base to corresponding altitude is 3:4.

To find

  • The altitude of the triangle.

Solution

  • Let the ratio be x.

Then,

⠀⠀⠀⠀⠀❍ Base = 3x

⠀⠀⠀⠀⠀❍ Altitude or height = 4x

We know that,

 \boxed{\tt{\bigstar{Area_{(Triangle)} = \dfrac{1}{2} \times base \times height{\bigstar}}}}

\tt:\implies\: \: \: \: \: \: \: \: {Area = 1176}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{1}{2} \times 3x \times 4x = 1176}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{1}{\cancel{2}} \times \cancel{12x^2} = 1176}

\tt:\implies\: \: \: \: \: \: \: \: {6x^2 = 1176}

\tt:\implies\: \: \: \: \: \: \: \: {x^2 = \dfrac{1176}{6}}

\tt:\implies\: \: \: \: \: \: \: \: {x^2 = 196}

\tt:\implies\: \: \: \: \: \: \: \: {x = \sqrt{196}}

\bf:\implies\: \: \: \: \: \: \: \: {x = 14}

Hence,

  • Altitude = 4x = 56 cm.

━━━━━━━━━━━━━━━━━━━━━━

Similar questions