Math, asked by loveisbusy, 5 months ago

the area of a parallelogram and a square are the same if the perimeter of the square is 160 m and the height of the parallelogram is 20 m find the length of the corresponding base of the parallelogram​

Answers

Answered by Anonymous
1

Given :-

\sf Area_{\;(parallelogram)} = Area_{\;(square)}

Perimeter of square = 160 m

Height of the Parallelogram = 20 m

⠀⠀

Need to find :-

The length of the corresponding base of the parallelogram?

━━━━━━━━━━━━━━━━━━━━━━━━━

Given that,

⠀⠀

Perimeter of square = 160 m

⠀⠀

\begin{gathered}\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\\end{gathered}†

\begin{gathered}\star\;{\boxed{\sf{\pink{Perimeter_{\;(square)} = 4 \times side}}}}\\ \\\end{gathered} </p><p>⋆

Therefore,

⠀⠀

</p><p>\begin{gathered}:\implies\sf 4 \times side = 160\\ \\\end{gathered}

\begin{gathered}:\implies\sf side = \cancel{ \dfrac{160}{4}}\\ \\\end{gathered}

\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{side = 40\;m}}}}}\;\bigstar\\ \\\end{gathered}

\therefore\;{\underline{\sf{Thus,\;side\;of\; square\;is\; \bf{40\;m}.}}}

⠀⠀

Now, Finding area of square,

⠀⠀

\begin{gathered}\star\;{\boxed{\sf{\pink{Area_{\;(square)} = side \times side}}}}\\ \\\end{gathered}

\begin{gathered}:\implies\sf Area_{\;(square)} = 40 \times 40\\ \\\end{gathered}

\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{Area_{\;(square)} = 1600\;m^2}}}}}\;\bigstar\\ \\\end{gathered}

\therefore\;{\underline{\sf{Area\;of\; square\;is\; \bf{1600\;m^2}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\\end{gathered}

\sf Area_{\;(parallelogram)} = Area_{\;(square)}

Therefore,

⠀⠀

\begin{gathered}\star\;{\boxed{\sf{\pink{Area_{\;(parallelogram)} = Base \times Height}}}}\\ \\\end{gathered}

\begin{gathered}\sf Here \begin{cases} &amp; \sf{Area = \bf{1600\;m^2}} \\ &amp; \sf{Height = \bf{20\;m}} \end{cases}\\ \\\end{gathered}

\begin{gathered}:\implies\sf Base \times 20 = 1600\\ \\\end{gathered}

\begin{gathered}:\implies\sf Base = \cancel{ \dfrac{1600}{20}}\\ \\\end{gathered}

\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{Base = 80\;m}}}}}\;\bigstar\\ \\\end{gathered}

\therefore\;{\underline{\sf{Length\;of\; corresponding\;base\;of\; parallelogram\;is\; \bf{80\;m}.}}}

Answered by Mehak04sharma123
0

Answer:

may be 16or 4 but not alll sure as solved orally

Similar questions