Math, asked by Mrwinner2, 3 months ago

The area of a rectangle and square are same. If the side of a square is 80 m and length of rectangular park is 200 m. Find breadth and perimeter of the rectangle.​

Answers

Answered by Anonymous
4

Answer:

Hlw⚡♥️

Side of a square park= 60m

Length of a square park= 90m

Area of the rectangle park= Area of the square park

90m\ \times6=60m\times60m90m ×6=60m×60m

b=\frac{60m\times60m}{90}b=

90

60m×60m

b=40m

Hence, the required breadth= 40m.

Answered by XxmiragexX
3

Given :

  • Area of Rectangle and square are same .
  • Side of square is 80 m and length of rectangle is 200 m.

To Find :

  • Breadth and Perimeter of Rectangle .

Solution :

Firstly we will find the Area of Square :

Using Formula :

\tt\boxed{Area\:of\:Square=Side\times{Side}}

Putting Values :

\longmapsto\tt{80\times{80}}

\longmapsto\tt\bf{6400\:{m}^{2}}

Now ,

As Given that Area of Square is equal to the area of Rectangle . So ,

\longmapsto\tt{Length=200\:m}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rectangle=l\times{b}}

Putting Values :

\longmapsto\tt{6400=200\times{b}}

\longmapsto\tt{\cancel\dfrac{6400}{200}=b}

\longmapsto\tt\bf{32\:m=b}

So , The Breadth of Rectangle is 32 m

Now ,

\longmapsto\tt{Length=200\:m}  \\ \longmapsto\tt{Breadth=32\:m}

Using Formula :

\tt\boxed{Perimeter\:of\:Rectangle=2(l+b)}

Putting Values :

\longmapsto\tt{2(200+32)} \\ \longmapsto\tt{2(232)} \\ \longmapsto\tt\bf{464\:m}

So , The Perimeter of Rectangle is 464 m

Similar questions