Math, asked by kuldeepdarbar7773, 3 months ago

the area of a rectangle is 168m².If the length is 14 m. find its breadth.Also ,find its perimeter​

Answers

Answered by Anonymous
4

Correct Question-:

  • The area of a rectangle is 168m² . If the length is 14 m . Find its breadth and perimeter .

AnswEr-:

  • \underline{\boxed{\star{\sf{\purple{Breadth \:of \:Rectangle \:: \: 12 m }}}}}
  • \underline{\boxed{\star{\sf{\purple{Perimeter \:of \:Rectangle \:: \: 52 m }}}}}

Explanation-:

Given-:

  • The area of a rectangle is 168m².
  • The length of Rectangle is 14 m .

To Find-:

  • The Perimeter and Breadth of Rectangle.

Now ,

  • \underline{\boxed{\star{\sf{\purple{Area \:of \:Rectangle \:: \: Length\times breadth}}}}}

Here ,

  • Length of Rectangle = 14 m
  • Breadth of Rectangle = ??
  • Area of Rectangle = 168 m².

Now ,

  • 168m² = 14 × breadth
  • 168/14 = Breadth
  • Breadth = 12 m

Therefore,

  • Breadth of Rectangle-: 12 m ...1

Now ,

  • \underline{\boxed{\star{\sf{\purple{Perimeter \:of \:Rectangle \:: \: 2(Length+ breadth)}}}}}

Here ,

  • Length of Rectangle = 14 m
  • Breadth of Rectangle = 12 m ......[ From 1]

Now ,

  • \implies {\large{\sf{Perimeter _{Rectangle}= 2(14 +12)}}}
  • \implies {\large{\sf{Perimeter _{Rectangle}= 2 \times 26 }}}
  • \implies {\large{\sf{Perimeter _{Rectangle}= 52m}}}

Therefore,

  • \underline{\boxed{\star{\sf{\purple{Perimeter \:of \:Rectangle \:: \: 52 m }}}}}

Hence ,

  • \underline{\boxed{\star{\sf{\purple{Breadth \:of \:Rectangle \:: \: 12 m }}}}}
  • \underline{\boxed{\star{\sf{\purple{Perimeter \:of \:Rectangle \:: \: 52 m }}}}}

♡ Figure related to the answer -:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 14 m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 12 m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

_______________________♡_________________________

Answered by CɛƖɛxtríα
88

{\underline{\underline{\bf{Given:}}}}

  • Area of a rectangle = 168 m².
  • Length of the rectangle = 14 m.

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The breadth of the rectangle.
  • Perimeter of the rectangle.

{\underline{\underline{\bf{Formulae\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Area}_{(Rectangle)}=l\times b\:sq.units}}}

\underline{\boxed{\sf{{Perimeter}_{(Rectangle)}=2(l+b)\:units}}}

\sf{Here,}

\:\:\:\:\:\:\bullet{\sf{\:l=length}}

\:\:\:\:\:\:\bullet{\sf{\:b=breadth}}

{\underline{\underline{\bf{Solution:}}}}

Breadth of the rectangle:

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ As the area of rectangle is given, ‎it can be found by substituting the given measures i.e, the measures of length and the value of area in the formula that we use to find the area of rectangle.

\:\:\:\:\:\:\:\:\implies{\sf{Area=Length\times Breadth}}

\:\:\:\:\:\:\:\:\implies{\sf{168=14\times Breadth}}

\:\:\:\:\:\:\:\:\implies{\sf{\frac{168}{14}=Breadth}}

\:\:\:\:\:\:\:\:\implies{\underline{\underline{\sf{\red{12\:m=Breadth}}}}}

Perimeter of the rectangle:

Now, we have all the required measures to find the perimeter. So, let's find the perimeter using the formula:

\:\:\:\:\:\:\:\:\implies{\sf{2\times(Length+Breadth)\: units}}

\:\:\:\:\:\:\:\:\implies{\sf{2\times (14+12)}}

\:\:\:\:\:\:\:\:\implies{\sf{2\times 26}}

\:\:\:\:\:\:\:\:\implies{\underline{\underline{\sf{\red{52\:metres}}}}}

{\underline{\underline{\bf{Final\:answer:}}}}

  • The breadth of the rectangle is 12 m.
  • The perimeter of the rectangle is 52 m.

________________________________________

Similar questions