Math, asked by hemanth0526tmlzs, 9 months ago

. The area of a rectangle with length 6 units is 24 sq. units. The coordinates of
three of the vertices of the rectangle are (0,3,) (0,-1) and (6,3). Find the
coordinates of the fourth vertex and draw the rectangle on a Cartesian plane.
(4 mark​

Answers

Answered by Mysterioushine
84

\huge\rm\underline\purple{GIVEN:}

  • \large\rm{Length\:and\:area\:of\:rectangle\:is\:6units\:and\:24sq.units}
  • \large\rm{Given\:three\:vertices\:of\:rectangle\:are\:(0,3),(0,-1),(6,3)}

\huge\rm\underline\purple{TO\:FIND:}

  • \large\rm{Fourth\:vertex\:of\:rectangle}

\huge\rm\underline\purple{SOLUTION:}

\large\rm{Let\:breadth\:of\:rectangle\:be\:'b'}

\large\rm\bold{\boxed{Area\:of\:rectangle\:=\:L\times\:B}}

\large\rm{L\rightarrow{length\:of\:rectangle}}

\large\rm{B\rightarrow{Breadth\:of\:rectangle}}

\large\rm{\implies{6\times\:b\:=\:24}}

\large\rm{\implies{b\:=\:\frac{24}{6}\:=\:4units}}

\large\rm{In\:rectangle\:The\:mid\:point\:of\:diagonals\:are\:equal}

\large\rm{Let\:the\:fourth\:vertex\:be(x,y)}

\large\rm{Mid\:point\:of\:two\:points\:(x_1,y_1),(x_2,y_2)\:is}

\large\rm\bold{\boxed{M\:=\:(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})}}

\large\rm{Mid\:point\:of\:BD\:=\:(\frac{(0+6)}{2},\frac{-1+3}{2})}

\large\rm{Mid\:point\:of\:BD\:=\:(3,1)}

\large\rm{Mid\:point\:of\:AC\:=\:(\frac{x+0}{2},\frac{3+y}{2})}

\large\rm{Mid\:point\:of\:BD\:=\:Mid\:point\:of\:AC}

\large\rm{\implies{(\frac{x}{2},\frac{3+y}{2})\:=\:(3,1)}}

\large\rm{\implies{\frac{x}{2}\:=\:3}}

\large\rm{\implies{x\:=\:6}}

\large\rm{\implies{\frac{3-y}{2}\:=\:1}}

\large\rm{\implies{3+y\:=\:2}}

\large\rm{\implies{y\:=\:-1}}

\large\rm{\therefore{The\:Fourth\:vertex\:=\:(x,y)\:=\:(6,-1)}}

Attachments:
Similar questions