Math, asked by rohanaryan6194, 3 months ago

The area of a rectangular field is 0.5 hectare. If one of the side of field is 40m, find the other side.

Answers

Answered by cdtssj04
0

Answer:

Area of rectangular field=0.5ha

1ha=10000m^2

Now area=0.5×10000=5000m^2

Area of rectangle=l×b

5000=l×12.5m

l=5000/12.5

l=400m

other side=400m

Answered by Anonymous
4

\bf \pink{Given}\begin{cases}&\sf{Area\:of\:the\:rectangular\:field=\bf{0.5\:hectare=5000\:m^2.}\sf{(\because\:1\:hectare=10000\:m^2)}} \\ \\ &\sf{Breadth\:of\:the\:rectangular\:field=\bf{40\:m.}}\end{cases}

To FinD:-

The Length of the rectangular field.

Solution:-

  • Let the length be l m.

We know that,

\normalsize{\pink{\underline{\boxed{\bf{\:Area_{(rectangle)}=Length\times\:breadth}}}}}

where,

  • Length = l m
  • Area = 5000 m²
  • Breadth = 40 m

Putting the values,

\normalsize\implies{\sf{5000=l\:\times40}}

\normalsize\implies{\sf{\dfrac{5000}{40}=l}}

\normalsize\implies{\sf{\dfrac{500\cancel{0}}{4\cancel{0}}=l}}

\normalsize\implies{\sf{\cancel{\dfrac{500}{4}}=l}}

\normalsize\implies{\sf{125=l}}

\normalsize\therefore\boxed{\mathfrak{\pink{Length=125\:m.}}}

VerificatioN:-

\normalsize\implies{\sf{Area_{(rectangle)}=Length\times\:breadth}}

\normalsize\implies{\sf{5000=125\times40}}

\normalsize\implies{\sf{5000=5000}}

\normalsize\therefore\boxed{\bf{LHS=RHS.}}

  • Hence verified.

The length of the rectangular field is 125 m.

Similar questions