Math, asked by ramsunil13971, 5 months ago

Y=x^2×logx .Find the second order derivatives

Answers

Answered by akarsh05
0

hope it helps you ❤️....

Attachments:
Answered by mathdude500
4

Answer:

Question:-

\bf \:If \: y \:  =  {x}^{2}  log(x) \:  find \: \dfrac{ {d}^{2}y }{ {dx}^{2} }

Formula used :-

\bf \:\dfrac{d}{dx} {x}^{n}  = n {x}^{n - 1}

\bf \:\dfrac{d}{dx} log(x)  =  \dfrac{1}{x}

\bf \:\dfrac{d}{dx}u.v \:  = u \dfrac{dv}{dx}  + v \dfrac{du}{dx}

Solution :-

\bf \:y \:  =  {x}^{2}  log(x)

Differnatiate w. r. t. x

\bf\implies \:\dfrac{d}{dx}y = \dfrac{d}{dx} {x}^{2}  log(x)

\bf\implies \:\dfrac{dy}{dx} = x²\dfrac{d}{dx} log(x)  +  log(x) \dfrac{d}{dx}x²

\bf\implies \:\dfrac{dy}{dx} =  {x}^{2}  \times \dfrac{1}{x}  +  log(x)  \times 2x

\bf\implies \:\dfrac{dy}{dx} = x + 2x log(x)

\bf\implies \:\dfrac{dy}{dx} = x(1 + 2 logx )

Differnatiate w. r. t. x

\bf\implies \:\dfrac{ {d}^{2}y }{ {dx}^{2} } = x\dfrac{d}{dx}(1 + 2logx) + (1 + 2logx)\dfrac{d}{dx}x

\bf\implies \:\dfrac{ {d}^{2}y }{ {dx}^{2} } =x \times 2 \times \dfrac{1}{x}  + (1 + 2logx) \times 1

\bf\implies \:\dfrac{ {d}^{2}y }{ {dx}^{2} } =2 + 1 + 2logx

\bf\implies \:\dfrac{ {d}^{2}y }{ {dx}^{2} } =3 + 2logx

_______________________________________

Similar questions