Math, asked by ujjawa, 1 year ago

The area of a rectangular plot is 528 m. the length of the plot (in meters) is one more than twice its breadth. We need find the length and breadth of the plot

Answers

Answered by anshaj0001
5
 let the breadth =b m
length = l =(2b+1)m
area =528m²

l*b= 528
(2b+1)b-528=0

2b²+b-528=0
2b²+33b-32b-528=0
b(2b+33)- 16(2b+33)=0
(2b+33)(b-16)=0
2b+33=0 or b-16=0

b should not be zero
therefore
b-16=0
b=16

breadth = 16m
length =l= 2b+1=2*16+1=32+1=33m
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
2

\huge\sf\pink{Answer}

☞ Length = 33m

☞ Breadth = 16m

\rule{110}1

\huge\sf\blue{Given}

✭ The area of the rectangular plot is 528 m square

✭ The length of the plot is one meter more than twice its breadth

\rule{110}1

\huge\sf\gray{To \:Find}

◈ Length and the breadth of the plot?

\rule{110}1

\huge\sf\purple{Steps}

\bullet\underline{\textsf{\: According to the Question}}

\sf{\leadsto l = 2b + 1\qquad -eq(1) }

Area of a rectangle is given by,

\underline{\boxed{\sf{\sf Area = Length \times Breadth }}}

Put the value of l in formula

\sf{ 528 = (2b+1)b }

\sf{ 528 = 2b^2 + b }

\sf{ 2b^2 + b - 528 = 0 }

\sf{ 2b^2 +(33-32)b -528 = 0 }

\sf{ 2b^2 + 33b - 32b - 528 = 0 }

\sf{ b(2b + 33) -16(2b + 33) = 0}

\sf{ (2b + 33)(b-16)=0 }

\sf{ b = \dfrac{-33}{2}  }

\sf{\orange{ b = 16 \:m }}

Put the value of 'b' in eq(1)

»» \sf{ l = 2 \times 16+1 }

»» \sf{ l = 32 +1 }

»» \sf{\green{l =33 \: m }}

\rule{170}3

Similar questions