Math, asked by jaisriramajayam1, 3 months ago

The area of a rhombus is 420cm2

and one of the diagonal is 14 cm. Find the other

diagonal.​

Answers

Answered by anjaliroy02
0

Answer:

area of diagonal=1/2*d1*d2

d2=2*area/d1

after putting the value and solving it we get

d2=60

Answered by INSIDI0US
11

Step-by-step explanation:

Question :-

  • The area of a rhombus is 420 cm² and one of its diagonal measures 14 cm. Find the other diagonal.

To Find :-

  • Diagonal of rhombus.

Solution :-

Given :

  • Area = 420 cm²
  • Diagonal (1) = 14 cm

By using the formula,

{\sf{\longrightarrow Area\ of\ rhombus\ =\ \dfrac{1}{2} \times d_1 \times d_2}}

Where,

  • d = length of the diagonals

According to the question, by using the formula, we get :

{\sf{\longrightarrow Area\ of\ rhombus\ =\ \dfrac{1}{2} \times d_1 \times d_2}}

{\sf{\longrightarrow 420\ =\ \dfrac{1}{\cancel2} \times \cancel{14} \times d_2}}

{\sf{\longrightarrow 420\ =\ 7 \times d_2}}

{\sf{\longrightarrow \dfrac{420}{7}\ =\ d_2}}

{\sf{\longrightarrow 60\ =\ d_2}}

{\sf{\longrightarrow d_2\ =\ 60\ cm}}

\therefore Hence, diagonal of rhombus is 60 cm.

More To Know :-

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

Similar questions