Math, asked by s1260tanu8142, 4 months ago

The area of a rhombus is equal to the area of a triangle. If the base of the triangle is 28 cm, its corresponding
altitude is 18 cm and one of the diagonals of a rhombus is 21 cm, find its other diagonal.​

Answers

Answered by CɛƖɛxtríα
55

{\underline{\underline{\bf{Given:}}}}

  • That, the area of a rhombus is equal to the area of a triangle.
  • Base of the triangle = 28 cm. And It's corresponding height = 18 cm.
  • Length of one diagonal of the rhombus = 21 cm.

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The length of another diagonal of the rhombus.

{\underline{\underline{\bf{Formulae\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Area}_{(Triangle)}=\frac{1}{2}bh\:sq.units}}}

\underline{\boxed{\sf{{Area}_{(Rhombus)}=\frac{1}{2}{d}_{1}{d}_{2}\:sq.units}}}

{\underline{\underline{\bf{Solution:}}}}

According to the question,

\rightarrow Area of triangle = Area of rhombus

\rightarrow{\sf{\frac{1}{2}bh=\frac{1}{2}{d}_{1}{d}_{2}}}

Now, by substituting the measures,

\implies{\sf{\frac{1}{\cancel{2}}\times \cancel{28}\times 18=\frac{1}{2}\times 21\times {d}_{2}}}

\implies{\sf{14\times 18=\frac{1}{2}\times 21\times {d}_{2}}}

\implies{\sf{252=\frac{1}{2}\times 21\times {d}_{2}}}

\implies{\sf{252\times 2=1\times 21\times {d}_{2}}}

\implies{\sf{504=21\times {d}_{2}}}

\implies{\sf{\frac{504}{21}={d}_{2}}}

\implies{\sf{\red{\underline{\underline{24\:cm={d}_{2}}}}}}

{\underline{\underline{\bf{Verification:}}}}

\rightarrow Area of triangle = Area of rhombus

\rightarrow{\sf{\frac{1}{2}bh=\frac{1}{2}{d}_{1}{d}_{2}}}

We know that the area of triangle is 252 m². So,

\:\:\:\:\:\:\:\rightarrow{\sf{252=\frac{1}{2}\times 21\times \purple{24}}}

\:\:\:\:\:\:\:\rightarrow{\sf{252=\frac{1}{\cancel{2}}\times \cancel{504}}}

\:\:\:\:\:\:\:\rightarrow{\sf{\pink{252 = 252}}}

\:\:\:\:\:\:\:\rightarrow{\sf{L.H.S=R.H.S}}

\rightarrow So, our answer is correct.

{\underline{\underline{\bf{Required\:answer:}}}}

  • The length of second (another) diagonal of the rhombus is 24 cm.

__________________________________________

Answered by Anonymous
6

Correct Question-:

  • The area of a rhombus is equal to the area of a triangle. If the base of the triangle is 28 cm, its corresponding altitude is 18 cm and one of the diagonals of a rhombus is 21 cm, find its other diagonal.

AnswEr- :

  • \underline{\boxed{\star{\sf{\blue{ Diagonal2 \: of \: Rhombus \:=24cm.}}}}}

Explanation-:

 \frak{Given \:-:}\begin{cases}  \sf{The \:area\: of \:a \:rhombus\: is\: equal \:to\: the\: area \:of\: a\: triangle  .}& \\\\ \sf{The \:base \:of\: the \:triangle \:is \:28 \:cm,\:and \: its \:corresponding\:altitude\: is \:18 \:cm.} & \\\\\ \sf{ One\: of\: the\: diagonals \:of \:a \:rhombus \:is\: 21\: cm.}  \end{cases}\\\\

 \frak{To\: Find \:-:}\begin{cases} & \sf{The\:other \:Diagonal \:of\:Rhombus.} \end{cases}\\\\

Now ,

  • \underline{\boxed{\star{\sf{\blue{ Area_{(Triangle)}\:= \frac{1}{2} × Base × Height.}}}}}
  • \underline{\boxed{\star{\sf{\blue{ Area_{(Rhombus)}\:= \frac{1}{2} × Diagonal 1× Diagonal2.}}}}}
  • \underline{\boxed{\star{\sf{\blue{ Area_{(Triangle)}\:=Area_{(Rhombus)}.}}}}}

Here ,

  • Base = 28 cm
  • Height or Altitude = 18 cm
  • Diagonal 1 = 21 cm
  • Diagonal 2 = ?? .

Now ,

  • \implies{\sf{\large { \frac{1}{2} × 28 × 18 \: =\: \frac {1}{2} \times 21 \times D_{2}}}}
  • \implies{\sf{\large {   28 × 9 \: =\: \frac {1}{2} \times 21 \times Diagonal_{2}}}}
  • \implies{\sf{\large { 252 cm²\: =\: \frac {1}{2} \times 21 \times Diagonal_{2}}}}
  • \implies{\sf{\large { 252 cm²\: =\:   10.5 \times Diagonal_{2}}}}
  • \implies{\sf{\large { \frac {252}{10.5} \: =\:  Diagonal_{2}}}}
  • \implies{\sf{\large { 24 cm\: =\:  Diagonal_{2}}}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ Diagonal2_{(Rhombus)}\:=24cm.}}}}}
  • \underline{\boxed{\star{\sf{\blue{ Area_{(Rhombus)}\:=252cm².}}}}}

Hence ,

  • \underline{\boxed{\star{\sf{\blue{ Diagonal2 \: of \: Rhombus \:=24cm.}}}}}

___________________________________________

♤ Verification ♤

  • \underline{\boxed{\star{\sf{\blue{ Area_{(Rhombus)}\:= \frac{1}{2} × Diagonal 1× Diagonal2.}}}}}

Here ,

  • Diagonal 1 = 21 cm
  • Diagonal 2 = 24 cm .
  • Area of Rhombus = 252 cm²

Now ,

  • \implies{\sf{\large { 252 cm²\: =\: \frac {1}{2} \times 21 \times 24}}}
  • \implies{\sf{\large { 252 cm²\: =\:  21 \times 12}}}
  • \implies{\sf{\large { 252 cm²\: =\: 252cm²}}}

Therefore,

  • \underline{\boxed{\star{\sf{\blue{ LHS = RHS.}}}}}
  • \underline{\boxed{\star{\sf{\blue{ Hence\:Verified!.}}}}}

________________________×__________________________

Similar questions