Math, asked by Anonymous, 3 months ago

the area of a right angle triangle is 30sq.m. its length is 80cm. then find its breadth. ​

Answers

Answered by RICHARD311
1

{ \underline{ \huge{ \bf {AnsWer : }}}}

We know that,

Area of a ∆ = ½ × base × height

=> 30 = ½ × 80 × height

=> 30 = 0.40 × height

=> 30/0.40 = height

=> height = 75cm.

Note :

➔ height = breadth

➔ length = base

Answered by CɛƖɛxtríα
45

{\boxed{\sf{Corrected\:question}}}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎The area of a right-angled triangle is 30 sq.m. If its perpendicular's length is 80 cm, then find its base length.

__________________________________________

{\boxed{\sf{Step\:by\:step\: explanation}}}

{\underline{\underline{\bf{Given:}}}}

  • Area of a right-angled triangle = 30 m² (3,000 cm²).
  • The length of its perpendicular = 80 cm.

{\underline{\underline{\bf{Need\:to\: find:}}}}

  • The length of its base.

{\underline{\underline{\bf{Formula\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Area}_{[Right\:angled\: triangle]}=\frac{1}{2}\times Base\times Perpendicular\:sq.units}}}

{\underline{\underline{\bf{Solution:}}}}

As the measures of area and length of perpendicular is given, the base length of the right-angled triangle can be found by putting the given values in the formula of area of right-angled triangle and solve for 'base'.

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎\underline{\sf{Area=\frac{1}{2}\times Base\times Perpendicular\:sq.units}}

Now, insert the values in its respective places.

\implies{\sf{3000=\frac{1}{\cancel{2}}\times Base\times \cancel{80}}}

\implies{\sf{3000=Base\times 40}}

\implies{\sf{\frac{300\cancel{0}}{4\cancel{0}}=Base}}

\implies{\sf{\frac{300}{4}=Base}}

\implies{\sf{\red{\underline{\underline{75\:cm=Base}}}}}

{\underline{\underline{\bf{Required\:answer:}}}}

  • The base of the right-angled triangle is 75 cm.

____________________________________________

Similar questions