Math, asked by chocolategirl2, 10 months ago

The area of a square ABCD is 64 sq.cm. Find the area of square obtained by joining the mid-points of the sides of the square ABCD.​

Answers

Answered by Anonymous
43

{\huge{\red{\sf{Given}}}}\begin{cases}\leadsto \bf{Area\:of\:a\:square\:is\:64cm^{2}} \\\leadsto \bf{Midpoints\:of\:the\:square\:are\:joined} \end{cases}

{\huge{\red{\sf{To\:Find}}}}\begin{cases}\leadsto\bf{Area\:made\:by\:the\:new\:enclosed\:figure} \end{cases}

\huge\red{\underline{\bf{\green{Answer}}}}

\sf{\red{Refer\:to\: attachment\: for\:figure}}

\sf{\purple{Let\:the\:square\:be\:ABCD}}

And,

\sf{\orange{\mapsto Q\:is\: midpoint\:of\:AB}}

\sf{\orange{\mapsto R\:is\: midpoint\:of\:BC}}

\sf{\orange{\mapsto S\:is\: midpoint\:of\:CD}}

\sf{\orange{\mapsto P\:is\: midpoint\:of\:AD}}

______________________________________

{\underline{\bf{\red{Now,}}}}

\sf{On\:joining\:the\: midpoints\:4\:\triangle s\:are\:formed}

which are ,

\sf{\pink{\leadsto \triangle PAQ}}

\sf{\pink{\leadsto \triangle BQR}}

\sf{\pink{\leadsto \triangle SCR}}

\sf{\pink{\leadsto \triangle PDS}}

______________________________________

And,

\sf{\underline{\green{\triangle PAQ\cong \triangle BQR\cong \triangle SCR\cong \triangle PAQ\cong \triangle PDS}}}

\bf{\blue{(By\:SAS\:congruence\:condition)}}

______________________________________

{\underline{\bf{\red{So,}}}}

\sf{\underline{\green{ar(\triangle PAQ)= ar(\triangle BQR)=ar( \triangle SCR)=ar(\triangle PAQ)=ar(\triangle PDS)}}}

______________________________________

\sf{\blue{Area\:of\:triangle\:PAQ}}

\sf{\implies ar(\triangle PAQ)=\dfrac{1}{2}\times PA\times AQ}

\sf{\implies ar(\triangle PAQ)=\dfrac{1}{2}\times 4cm\times 4cm}

\sf{\implies ar(\triangle PAQ)=\dfrac{1}{\cancel{2}}\times \cancel{4cm}^{2}\times 4cm}

{\underline{\pink{\bf{\longmapsto ar(\triangle PAQ)=8cm^{2}}}}}

______________________________________

\sf\purple{So\: total \:area \:of\: 4 \:triangles} = \\\pink{(4\times 8)cm^{2}=32cm^{2}}

Therefore ,

\green{\boxed{\orange{\bf{Required\:area=ar(ABCD)-4ar(\triangle PAQ)}}}}

\sf{Required\:  Area=(64-32)cm^{2}}

{\underline{\boxed{\red{\bf{\leadsto Required\:Area= 32cm^{2}}}}}}

Attachments:
Similar questions