Math, asked by shashi768595, 5 months ago

the area of a square field is 12544m².a rectangular field whose lengh is 24 more than its breadth and it's perimeter is equal to the perimeter of square find area of rectangular field​

Answers

Answered by SarcasticL0ve
16

Given:

  • Area of square field is 12544 m².
  • Length of Rectangular field is 24 m more than its breadth.
  • \sf Perimeter_{\;(rectangular\;field)} = Perimeter_{\;(square\;field)}

⠀⠀

To find:

  • Area of rectangular field?

⠀⠀

Solution:

⠀⠀

☯ Let breadth of Rectangular field be x m.

Therefore, Length of Rectangular field will be (x + 24) m

⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • Area of square field is 12544 m².

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(square)} = side \times side}}}}\\ \\

:\implies\sf side \times side = 12544\\ \\

:\implies\sf (side)^2 = 12544\\ \\

:\implies\sf \sqrt{side^2} = \sqrt{12544}\\ \\

:\implies{\underline{\boxed{\frak{\purple{side = 112\;m}}}}}\;\bigstar

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

Now, Perimeter of square field,

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(square)} = 4 \times side}}}}\\ \\

:\implies\sf Perimeter_{\;(square\:field)} = 4 \times 112\\ \\

:\implies{\underline{\boxed{\frak{\purple{Perimeter_{\;(square\:field)} = 448\;m}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Thus,\; Perimeter\;of\;square\;field\;is\; \bf{448\;m}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

Given that,

⠀⠀

  • \sf Perimeter_{\;(rectangular\;field)} = Perimeter_{\;(square\;field)}

⠀⠀

Therefore,

⠀⠀

\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\

\sf Here \begin{cases} & \sf{Length,\;l = \bf{x\;m}}  \\ & \sf{Breadth,\;b = \bf{(x + 24)\;m}} \\ & \sf{Perimeter = \bf{448\;m}} \end{cases}\\ \\

\dag\;{\underline{\frak{Putting\;values,}}}\\ \\

:\implies\sf 2[x + (x + 24)] = 448\\ \\

:\implies\sf x + (x + 24) = \cancel{ \dfrac{448}{2}}\\ \\

:\implies\sf x + (x + 24) = 224\\ \\

:\implies\sf 2x + 24 = 224\\ \\

:\implies\sf 2x = 224 - 24\\ \\

:\implies\sf 2x = 200\\ \\

:\implies\sf x = \cancel{ \dfrac{200}{2}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{x = 100\;m}}}}}\;\bigstar\\ \\

Therefore,

⠀⠀

  • Breadth of rectangle, x = 100 m
  • Length of rectangle, (x + 24) = 124 m

⠀⠀

\therefore Hence, Length and Breadth of Rectangular field is 100 m and 124 m respectively.


VishalSharma01: Awesome Answer :)
amansharma264: Nice
Answered by Anonymous
35

\star\underline{\mathtt\orange{❥Q} \mathfrak\blue{u }\mathfrak\blue{E} \mathbb\purple{ s}\mathtt\orange{T} \mathbb\pink{iOn}}\star\:

the area of a square field is 12544m².a rectangular field whose lengh is 24 more than its breadth and it's perimeter is equal to the perimeter of square find area of rectangular field

\star\underbrace{\mathtt\red{❥ᴀ} \mathtt\green{n }\mathtt\blue{S} \mathtt\purple{W}\mathtt\orange{e} \mathtt\pink{R}}\star\:

 { { \underbrace{ \mathbb{ \red{GiVeN\ }}}}}

 Area\: of\: square\: field \:is\: 12544 m².

 Length\: of \:Rectangular\: field\: is\: 24 m\\ more \:than \:its\: breadth.

 \sf Perimeter_{\;(rectangular\;field)} = Perimeter_{\;(square\;field)}

 { { \underbrace{ \mathbb{ \red{To\:PrOvE\ }}}}}

 Area \:of\: rectangular\: field

 { \color{aqua}{ \underbrace{ \underline{ \color{lime}{ \mathbb{\star SoLuTiOn\star }}}}}}

 Let\: breadth \:of \:Rectangular\: field\: be\: xm.

 Therefore\:Length\: of\: Rectangular\\ field\: will \:be \:(x + 24) m

⠀⠀

 \begin{gathered}\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\\end{gathered}

 Area \:of \:square \:field \:is \:12544 m².

⠀⠀

 \begin{gathered}\dag\;{\underline{\frak{We\;know\;that,}}}\\ \\\end{gathered}

 \begin{gathered}\star\;{\boxed{\sf{\pink{Area_{\;(square)} = side \times side}}}}\\ \\\end{gathered}

 \begin{gathered}:\implies\sf side \times side = 12544\\ \\\end{gathered}

 \begin{gathered}:\implies\sf (side)^2 = 12544\\ \\\end{gathered}

 \begin{gathered}:\implies\sf \sqrt{side^2} = \sqrt{12544}\\ \\\end{gathered}

 :\implies{\underline{\boxed{\frak{\purple{side = 112\;m}}}}}\;\bigstar

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

 Now\: Perimeter\: of\: square\: field

⠀⠀

 \begin{gathered}\dag\;{\underline{\frak{We\;know\;that,}}}\\ \\\end{gathered}

 \begin{gathered}\star\;{\boxed{\sf{\pink{Perimeter_{\;(square)} = 4 \times side}}}}\\ \\\end{gathered}

 \begin{gathered}:\implies\sf Perimeter_{\;(square\:field)} = 4 \times 112\\ \\\end{gathered}

 \begin{gathered}:\implies{\underline{\boxed{\frak{\purple{Perimeter_{\;(square\:field)} = 448\;m}}}}}\;\bigstar\\ \\\end{gathered}

 \therefore\;{\underline{\sf{Thus,\; Perimeter\;of\;square\;field\;is\; \bf{448\;m}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

 Given\: that

⠀⠀

 \sf Perimeter_{\;(rectangular\;field)} = Perimeter_{\;(square\;field)}

 Therefore

 \begin{gathered}\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\\end{gathered}

 \begin{gathered}\sf Here \begin{cases} & \sf{Length,\;l = \bf{x\;m}} \\ & \sf{Breadth,\;b = \bf{(x + 24)\;m}} \\ & \sf{Perimeter = \bf{448\;m}} \end{cases}\\ \\\end{gathered}

 \begin{gathered}\dag\;{\underline{\frak{Putting\;values,}}}\\ \\\end{gathered}

 \begin{gathered}:\implies\sf 2[x + (x + 24)] = 448\\ \\\end{gathered}

 \begin{gathered}:\implies\sf x + (x + 24) = \cancel{ \dfrac{448}{2}}\\ \\\end{gathered}

 \begin{gathered}:\implies\sf x + (x + 24) = 224\\ \\\end{gathered}

 \begin{gathered}:\implies\sf 2x + 24 = 224\\ \\\end{gathered}

 \begin{gathered}:\implies\sf 2x = 224 - 24\\ \\\end{gathered}

 \begin{gathered}:\implies\sf 2x = 200\\ \\\end{gathered}

 \begin{gathered}:\implies\sf x = \cancel{ \dfrac{200}{2}}\\ \\\end{gathered}

 \begin{gathered}:\implies{\underline{\boxed{\frak{\purple{x = 100\;m}}}}}\;\bigstar\\ \\\end{gathered}

 \therefore Breadth \:of\: rectangle\: x = 100 m

 \therefore Length\: of\: rectangle \:(x + 24) = 124 m

⠀⠀

 \therefore Hence\: Length \:and \:Breadth\: of\: Rectangular\\ field\: is\: 100 m \:and 124 m\: respectively.

Similar questions