Math, asked by palak5592, 1 year ago

the area of a square field is 5184 find the area of rectangular field whose perimeter is equal to the perimeter of square field and whose length is twice of its breath

Answers

Answered by govind1698
13

let 'l' be length and  'b'  be breath

let side of square be a

then area of square = a*a

               a=72

perimeter of square=4a

                                   =4(72)

                                       =288=perimeter of rectangle

              as per condition  2b=l

                                            b=l/2

perimeter of rectangle =2(l+b)

                                        288 =2(l+l/2)

                                         288=2l+l

                                       288/3=l

                                       l=96

b=l/2=96/2=48

area of rectangle =l*b=96*48=4608

                               

Answered by SmãrtyMohït
27
Here is your solution

Given :-

Area of square = 6889 m^2

we have to find perimeter of square =?

Now

Area of square = side^2

=>5184 m^2 = side^2

=>72m =side of square

Now

perimeter of square => 4× side .
=> 4×72=288m

Now,

Let,
The breadth of rectangle be x

Then the length be 2x

As we know that,

 perimeter of a rectangle =2(length+breadth)

And, perimeter of square = perimeter of rectangle = 288m 

288 = 2(x + 2x)

288/2 = 3x

144 = 3x

144/3 =x

48 = x

Then,

breadth of rectangle = x = 48 m 

and length of rectangle = 2x = (2×48) = 96m 

Now,

Area of rectangle = length×breadth

Here,

Area of rectangle =  48×96 

Area of rectangle =4608 m^2

Hopeit helps you
Similar questions