Math, asked by angkur, 1 year ago

the area of a square field is 5184m². a rectangular field whose length is twice the breadth, has its perimeter equal to the perimeter of the square field. find the area of the rectangular field ?

Answers

Answered by BESTINTHEWORLD
14
Let the side of square be x

Area of square=x^2

5184m^2=x^2

x=72 m


perimeter of square field=4 x

4×72
288 m


Let the length be 2x and breadth=x


Perimeter of square field =perimeter of rectangular field


Perimeter of rectangular field=2 (l+b)

288=2 (2x+x)

288=4x+2x

288=6x

288/6=x


48=x.


Length of rectangular field=2×48=96m

Breadth of rectangular field=48m


Area of rectangular field=96×48=4608m^2


Hence the area of rectangular field is 4608m^2.



hope its helps

Answered by Anonymous
28

Given:

  • Area of square field is 5184 m².
  • Length of Rectangular field is twice its breadth.
  • \sf Perimeter_{\;(rectangular\;field)} = Perimeter_{\;(square\;field)}

⠀⠀

To find:

  • Area of rectangular field?

⠀⠀

Solution:

⠀⠀

☯ Let breadth of Rectangular field be "x" m.

Therefore, Length of Rectangular field will be "2x" m

⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Area of square field is 5184 m².

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(square)} = side \times side}}}}\\ \\

:\implies\sf side \times side = 5184\\ \\

:\implies\sf (side)^2 = 5184\\ \\

:\implies\sf \sqrt{side^2} = \sqrt{5184}\\ \\

:\implies{\underline{\boxed{\frak{\purple{side = 72\;m}}}}}\;\bigstar

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

Now, Perimeter of square field,

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(square)} = 4 \times side}}}}\\ \\

:\implies\sf Perimeter_{\;(square\:field)} = 4 \times 72\\ \\

:\implies{\underline{\boxed{\frak{\purple{Perimeter_{\;(square\:field)} = 288\;m}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Thus,\; Perimeter\;of\;square\;field\;is\; \bf{288\;m}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

Given that,

⠀⠀

\sf Perimeter_{\;(rectangular\;field)} = Perimeter_{\;(square\;field)}

⠀⠀

Therefore,

⠀⠀

\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\

\sf Here \begin{cases} & \sf{Length,\;l = \bf{2x\;m}}  \\ & \sf{Breadth,\;b = \bf{x\;m}} \\ & \sf{Perimeter = \bf{288\;m}} \end{cases}\\ \\

\dag\;{\underline{\frak{Putting\;values,}}}\\ \\

:\implies\sf 2[(2x + x)] = 288 \\ \\

:\implies\sf 4x + 2x = 288\\ \\

:\implies\sf 6x = 288\\ \\

:\implies\sf x = {\cancel \dfrac {288}{6}}\\ \\

:\implies\sf x = 48\\ \\

:\implies{\underline{\boxed{\frak{\purple{x = 48\;m}}}}}\;\bigstar\\ \\

Therefore,

⠀⠀

  • Breadth of rectangle, x = 48 m
  • Length of rectangle, 2x = 2 × x = 96 m

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

Now, Area of rectangular field,

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(rectangle)} = Length \times Breadth}}}}\\ \\

\sf:\implies{Area_{\;(rectangle)} = 96 \times 48}\\ \\

:\implies{\underline{\boxed{\frak{\purple{Area_{\;(rectangular \:field)} = 4608\;m^2}}}}}\;\bigstar\\ \\

\therefore Hence, the area of the rectangular field is 4608 m²

Similar questions