Math, asked by samairakapoor4, 1 year ago

The area of a square plot of land is 153 sq. metres. Find the approximate length of the side of the plot. [ Use the square root table ]​

Answers

Answered by amankr11
7

the length of side of the plot=√153

=12.369


samairakapoor4: Thank you so much
amankr11: your welcome
Answered by smarty4321
266

\small \bf \red{hey \: mate \: here \: is \: ur \: ans} \\  \\ \small \bf \red{ \huge \: solution} \\  \\ \small \bf \red{area \: of \: square \: plot \: of \: land = 153} \\  \\ \small \bf \red{as \: we \: know \: that \: } \\  \\ \small \bf \red{area \: of \: square = side \times side} \\  \\ \small \bf \red{ \therefore \: (side)^{2} = 153 } \\  \\ \small \bf \red{side =  \sqrt{153} } \\  \\ \small \bf \red{let \: we \: find \: the \: value \: of \:  \sqrt{153} } \\  \\ \small \bf \red{as \: we \: can \: write} \\  \\ \small \bf \red{( \sqrt{153}) =  \sqrt{144 + 9}  } \\  \\ \small \bf \red{using \: this \: formula} \\  \\ \small \bf \red{ \sqrt{x \pm \: y }  =  \sqrt{x} \pm \:  \frac{y}{2 \sqrt{x} }  } \\  \\ \small \bf \red{ \sqrt{144 + 9} =  \sqrt{144} +  \frac{9}{2 \sqrt{144} }   } \\  \\ \small \bf \red{ \sqrt{153} = 12 +  \frac{9}{2 \times 12}  } \\  \\ \small \bf \red{ \sqrt{153}  = 12 +  \frac{3}{8} } \\  \\ \small \bf \red{ \sqrt{153} = 12 + 0.375 } \\  \\ \small \bf \red{ \sqrt{153} = 1.375 } \\  \\ \small \bf \red{ \sqrt{153}  = 1.4 \: (approximately)}  \\  \\ \small \bf \red{according \: to \: calculator} \\  \\ \small \bf \red{ \sqrt{153} = 12.369 } \\  \\ \small \bf \red{ \sqrt{153}  = 12.4} \\  \\ \small \bf \red{ \therefore \: length \: of \: side = 12.4 \: ans}

Similar questions