Math, asked by ambika4416, 9 months ago

the area of a trapezium is 180cm² and its height is 12cm. if one of the parallel sides is double that of the other, find
The two parallel sides.


Answers

Answered by Anonymous
40

Given :

  • Area of trapezium is 180 cm²
  • Height of the trapezium is 12 cm.
  • One parallel side is double that of the other one.

To Find :

  • Two parallel sides.

Solution :

Let the first parallel side be x cm.

Let the second parallel side be y cm.

Case 1 :

One side is double of the other side.

Equation :

\sf{\longrightarrow{x=2y}}

\sf{\dfrac{x}{2}=y\:\:\:(1)}

Case 2 :

Area of trapezium is 180 cm² and height is 12 cm.

Formula :

\large{\boxed{\bold{Area_{Trapezium}\:=\:\dfrac{1}{2}\:\times\:(sum\:of\:parallel\:sides)\:\times\:height}}}

Equation :

\sf{\longrightarrow{180\:=\:\dfrac{1}{2}\:\times\:(x+y)\:\times\:12}}

\sf{\longrightarrow{180\:=\:\dfrac{1}{2}\:\times\:(12x+12y)}}

\sf{\longrightarrow{360\:=12x+12y}}

\sf{\longrightarrow{360=12(x+y)}}

\sf{\longrightarrow{\dfrac{360}{12}=x+y}}

\sf{\longrightarrow{30=x+y}}

\sf{\longrightarrow{30\:=\:x+\dfrac{x}{2}}}

\sf{\longrightarrow{30=\dfrac{2x+x}{2}}}

\sf{\longrightarrow{30=\dfrac{3x}{2}}}

\sf{\longrightarrow{30\:\times\:2=3x}}

\sf{\longrightarrow{60=3x}}

\sf{\longrightarrow{\dfrac{60}{3}=x}}

\sf{\longrightarrow{20=x}}

Substitute, x = 20 in equation (1)

\sf{\longrightarrow{\dfrac{x}{2}=y}}

\sf{\longrightarrow{\dfrac{20}{2}=y}}

\sf{\longrightarrow{10=y}}

\large{\boxed{\bold{First\:parallel\:side\:=\:x\:=\:20\:cm}}}

\large{\boxed{\bold{Second\:parallel\:side\:=\:y\:=\:10\:cm}}}

Answered by CaptainBrainly
9

GIVEN:

Area of trapezium = 180cm²

Height of the trapezium = 12cm

One of the parallel sides is double the others.

TO FIND:

The two parallel sides of trapezium

SOLUTION:

Let the parallel sides of trapezium be x and 2x

We know that,

Area of trapezium = 1/2 [ sum of parallel sides] × h

180 = 1/2 [ x + 2x ] × 12

==> 180 = 3x × 6

==> 180 = 18x

==> x = 180/18

==> x = 10cm

One of the side = x = 10cm

Another side = 2x = 2 × 10 = 20cm

Therefore, the sides are 10cm and 20cm.

Similar questions