Math, asked by prabhuvadigepally, 1 year ago

the area of a trapezium is 34cm and the length of one of the parallel sides is 10cm and its height is 4cm .Find the length of the other parallel side​

Answers

Answered by Simrankaur29
15

Answer:

Here's your answer

Hope it helps

Attachments:
Answered by hotcupid16
46

\sf Given \begin{cases} & \sf{Area\:of\: trapezium = \bf{34\:cm^2}}  \\ & \sf{Length\:of\:one\:parallel\:side = \bf{10\:cm}} \\&\sf{Height\:of\:trapezium = \bf{4\:cm}}  \end{cases}\\ \\

To find: Length of other parallel side?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

☯ Let's consider the length of other parallel side be x cm.

⠀⠀⠀⠀

DIAGRAM:

\setlength{\unitlength}{1.3cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 4\ cm$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf 10\ cm $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf x\ cm $}\end{picture}

⠀⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

Area of trapezium is given by,

\star\;{\boxed{\sf{\pink{Area_{\;(trapezium)} = \dfrac{1}{2} \times (a + b) \times h}}}}\\ \\

Where,

a and b are two parallel sides & h is the height or distance between two parallel sides of trapezium.

⠀⠀⠀⠀

:\implies\sf 34 = \dfrac{1}{2} \times (10 + x) \times 4\\ \\ \\ :\implies\sf 34 = \dfrac{1}{\cancel{2}} \times (10 + x) \times \cancel{4}\\ \\ \\ :\implies\sf 34 = (10 + x) \times 2\\ \\ \\ :\implies\sf 34 = 20 + 2x\\ \\ \\ :\implies\sf 34 - 20 = 2x\\ \\ \\:\implies\sf 14 = 2x\\ \\ \\ :\implies\sf x = \cancel{\dfrac{14}{2}}\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{x = 7\:cm}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Hence,\:Length\:of\:other\:side\:is\: {\textsf{\textbf{7\:cm}}}.}}}

Similar questions