Math, asked by 9067arya, 5 months ago

the area of a trapezium is 475sq.cm. parallel sides are in the ratio 2:3 and height is 10cm. the length of the longer side is

Answers

Answered by Uriyella
70
  • The length of the longer side of the trapezium = 57 cm.

Given :

  • The area of a trapezium = 475 cm².
  • The ratio of the parallel sides of the trapezium = 2 : 3.
  • The height of the trapezium = 10 cm.

To Find :

  • The length of the longer side.

Solution :

Let,

The length of the smaller side of the trapezium be 2x.

The length of the longer side of the trapezium be 3x.

Given,

Area of the trapezium = 475 cm²

We know that,

 \huge\blue\star  \:  \:  \large\boxed{\large{\orange{\sf{Area \: of \: trapezium=  \dfrac{1}{2} \times (Sum \: of \: parallel \: sides) \times h}}}}

So,

 \bf \implies \dfrac{1}{2}  \times (Sum \: of \: parallel \: sides) \times h = 475  \: {cm}^{2}

We have,

  • Sum of parallel sides = 2x + 3x.
  • h = height = 10 cm.

First, we need to find the value of x.

Now, substitute both the given values in the formula of area of the trapezium.

\bf \implies \dfrac{1}{\not2} \times (2x + 3x) \times \not10 \: cm =  {475 \: cm}^{2}\\\\\\\bf \implies 1 \times (5x) \times 5 ={475 \: cm}^{2}\\\\\\\bf \implies 5x=  \frac{ {475 \not{cm}}^{2} }{5 \not cm}\\\\\\\bf \implies 5x=  \dfrac{\not475}{\not5} \: cm\\\\\\\bf \implies 5x = 95 \: cm\\\\\\\bf \implies x =  \frac{ \not95}{ \not5} \: cm\\\\\\\bf \implies x = 19 \: cm\\\\\\ \:  \:  \: \bf \therefore \:  \: x = 19 \: cm

So, the length of the parallel sides of the trapezium are :-

★ Length of the smaller side of the trapezium = 2x = 2 × 19 cm = 38 cm.

★ Length of the longer side of the trapezium = 3x = 3 × 19 cm = 57 cm.

Hence,

The length of the longer side of the trapezium is 57 cm.


EliteSoul: Great
BrainlyPopularman: Awesome ♡
Uriyella: ThankYou! :)
Anonymous: Awesome ❤️
MysterySoul: Exemplary Answer! :-)
Answered by Anonymous
61

Given

  • Area of a Trapezium is 475cm².
  • Parallel sides are in ratio 2:3.
  • Height of the Trapezium is 10cm.

To find

  • Length of the longer side.

Solution

  • Let the ratio be x.

❍ Shorter side = 2x

❍ Longer side = 3x

  • As it is given in the question that the area of trapezium is 475cm².

\setlength{\unitlength}{1.5cm}\begin{picture}\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 10\ cm$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf 3x $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 2x $}\end{picture}

⠀⠀⠀⠀⠀⠀⠀⠀Required Diagram

We know that

\large{\boxed{\boxed{\sf{Area_{(Trapezium)} = \dfrac{Sum\: of\: parallel\: lines}{2} \times height}}}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{2x + 3x}{\cancel{2}} \times \cancel{10} = 475}

\tt:\implies\: \: \: \: \: \: \: \: {5x \times 5 = 475}

\tt:\implies\: \: \: \: \: \: \: \: {25x = 475}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{475}{25}}

\bf:\implies\: \: \: \: \: \: \: \: {x = 19}

  • We have, x = 19

Now

\mathcal\longrightarrow{Smaller\: side = 2x = 38cm}

\mathcal\longrightarrow{Longer\: side = 3x = 57cm}

Hence,

  • The longer side of the Trapezium is 57cm.

━━━━━━━━━━━━━━━━━━━━━━


EliteSoul: Nice
BrainlyPopularman: Good
Similar questions