The area of a trapezium of height 25 cm is 400 cm2
. If the height of
one parallel sides is 25 cm, find the length of other parallel sides.
Answers
Step-by-step explanation:
⠀━━━━━━━━━━━━━━━━━━━━━━━━
The area of a trapezium of height 25 cm is 400 cm2. If the height of one parallel sides is 25 cm, find the length of other parallel sides.
⠀━━━━━━━━━━━━━━━━━━━━━━━━
∴ CF = DF − CD
⇛(77−60)
⇛ 17cm
∴ For △BCF
Permiter of triangle △BCF = BC + BF + CF
⇛ (25 + 26 + 17) cm
⇛ 68cm
∴ By \: Heron's \: \: formula [/tex] Area \: of \: triangle \: △BCF = \sqrt{S(s−BC)(s−BF)(s−CF)}
[/tex] = \sqrt{34(34−25)(34−26)(34−17)} [/tex] = \sqrt{34×9×8×17} [/tex]\sqrt{41616} = 204 {cm}^{2} [/tex] ∴let \: h \: cm \: be \: the \: length \: of \:perpendicular \: to \: CF \: \\ ∴Area \: of \: BCF \: = \frac{1}{2} \times CF×BE [/tex] = 204 = \times \frac{1}{2} \times 17 \times h[/tex] = h \times \frac{204 \times 2}{14} = 24cm [/tex] ∴Area \: trapezium \: of \: ABCD \: ⇛\: \frac{1}{2} \: 21[(60+77)×24]= \frac{1}{2} = (137 \times 29) 1⇛ \frac{1}{2} \times 3288 [/tex] [/tex]