Math, asked by manishbishnoi79, 4 months ago

The area of a trapezium of height 25 cm is 400 cm2

. If the height of

one parallel sides is 25 cm, find the length of other parallel sides.​

Answers

Answered by Itzcupkae
4

Step-by-step explanation:

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\mathrm{Question}}}

The area of a trapezium of height 25 cm is 400 cm2. If the height of one parallel sides is 25 cm, find the length of other parallel sides.

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\mathrm{Answer}}}

∴ CF = DF − CD

⇛(77−60)

⇛ 17cm

∴ For △BCF

Permiter of triangle △BCF = BC + BF + CF

⇛ (25 + 26 + 17) cm

⇛ 68cm

 \:∴ Semiperimeter  \:  \: of  \:  \: the  \:  \: triangle  \:  \: (s)= \:  \frac{p}{2}  =  \frac{68}{2}  = 34cm

∴ By \: Heron's \: \: formula [/tex] Area \: of \: triangle  \: △BCF = \sqrt{S(s−BC)(s−BF)(s−CF)}

[/tex] = \sqrt{34(34−25)(34−26)(34−17)} [/tex] = \sqrt{34×9×8×17} [/tex]\sqrt{41616} = 204 {cm}^{2} [/tex] ∴let  \: h \:  cm  \: be \: the \: length \: of \:perpendicular \: to \:  CF \: \\ ∴Area \: of  \: BCF \: = \frac{1}{2} \times CF×BE [/tex] = 204 = \times \frac{1}{2} \times 17 \times h[/tex] = h \times \frac{204 \times 2}{14} = 24cm [/tex] ∴Area \: trapezium \: of \: ABCD \: ⇛\: \frac{1}{2} \: 21[(60+77)×24]= \frac{1}{2} = (137 \times 29) 1⇛ \frac{1}{2} \times 3288 [/tex] [/tex]

= {\boxed{1644}}

⠀━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:

Anonymous: Splendid !!❤
manishbishnoi79: no
Similar questions