Math, asked by balajinaikmude1344, 10 months ago

The area of a triangle is equal to that of a square whose each side measures 70 cm find the side of the triangle in metres corresponding to the altitude measuring 35 cm

Answers

Answered by Brâiñlynêha
6

\huge\mathbb{\red{SOLUTION:-}}

  • Given that the area if square=area of triangle

\bold{Given}\begin{cases}\sf{Side\:of\: square=70cm}\\ \sf{Altitude\:of\: triangle=35cm}\end{cases}

  • We have to find the side of triangle

\bf\underline{According\:to\: Question:-}

  • Let find the area of square

\boxed{\sf{Area\:of\:square=side\times side}}

\sf Area=70\times 70\\ \sf\implies 4900cm{}^{2}

  • So the area if square is
  • \sf\implies 4900cm{}^{2}

  • Then the. area if triangle is also
  • \sf\implies 4900cm{}^{2}

Now we have to find the base of triangle

\boxed{\sf{Area\:of\: traingle=\frac{1}{2}\times base\times height}}

\sf 4900=\frac{1}{2}\times base\times 35\\ \\ \sf\implies 4900\times 2=base\times 35 \\ \\\sf\implies 9800=base\times 35\\ \\ \sf\implies \cancel{\frac{9800}{35}}=base\\ \\ \sf\implies base=280cm

\boxed{\sf{Base=280cm}}

#BAL

#answerwithquality

Answered by 3CHANDNI339
37

 \underline \mathbb{SOLUTION}

IT IS GIVEN THAT , AREA OF Square = AREA OF 35 cm.

 \underline \mathbb{TO\:FIND}

》SIDE OF TRIANGLE

 \underline \mathbb{ATQ}

 \underline \mathbb{LET}

Find the area of square

 =  > area = side \times side

 =  > area = 70 \times 70 = 4900 {cm}^{2}

THEREFORE, AREA OF TRIANGLE = AREA OF SQUARE

 =  > 4900 {cm}^{2}

 \underline \mathbb{NOW}

》WE HAVE TO FIND THE BASE OF TRIANGLE.

area \: of \: triangle=  \frac{1}{2} \times base \: \times height

 =  > 4900 =  \frac{1}{2}  \times  base \times 35

 =  > 4900 \times 2 = base \times 35

 =  > 9800 = base \times 35

 =  >  Base =\frac{9800}{35}

 =  > base = 280cm

 \underline \mathbb{ANSWER= 280 cm}

_______________________________________

#BAL

#Answerwithquality

Similar questions