Math, asked by jainbramhi196, 7 months ago

the area of a triangle whose vertices are (0,0) , (4,0) and (0,6) is ​

Answers

Answered by Ataraxia
28

Solution :-

Let the vertices of triangle be :-

A ( 0 , 0 )

B ( 4 , 0 )

C ( 0 , 6 )

\underline{\boxed{\bf Area \ of \ triangle = \dfrac{1}{2} \times [ \ x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) \  ] }  }

Here :-

\bullet \sf \ x_1 = 0 \\\\\bullet \sf \ x_2 = 4 \\\\\bullet \sf \ x_3 = 0 \\\\\bullet \sf \ y_1 = 0 \\\\\bullet \sf \ y_2 = 0 \\\\\bullet \sf \ y_3 = 6

\longrightarrow \sf \dfrac{1}{2} \times [ \ 0(0-6)+4(6-0)+0(0-0) \ ] \\\\\longrightarrow \dfrac{1}{2} \times [ \ ( 0 \times -6 )+(  4 \times 6 )+( 0 \times 0 ) \ ] \\\\\longrightarrow \dfrac{1}{2} \times [ \ 0+24+0 \ ] \\\\\longrightarrow \dfrac{1}{2} \times 24 \\\\\longrightarrow\bf 12 \ sq.units

Area of triangle ABC = 12 sq.units


VishalSharma01: Awesome Answer :)
Answered by Anonymous
183

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Given:-

Vertices of a triangle :-

  • A =  (0,0)

  • B = (4,0)

  • C = (0,6)

To Find:-

  • Area of the triangle.

Solution:-

Formula to find the Area of the triangle:-

\pink\leadsto\large\boxed{\tt\purple{\dfrac{1}{2} [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)] }}

\rightarrow\: \sf {x_1 =0}\\\rightarrow\: \sf {y_2 =0}\\\rightarrow\: \sf {y_3=6}\\\rightarrow\: \sf{x_2 =4}\\\rightarrow\: \sf {y_1 =0}\\\rightarrow\: \sf {x_3 =0}\\

‣ Putting the values together :-

\pink\leadsto\sf{\dfrac{1}{2}[0(0-6)+4(6-0)+(0-0)]}

\pink\leadsto \sf{\dfrac{1}{2}[(0)-6)+4(6-0)+0-0]}

\pink\leadsto \sf{\dfrac{1}{2}[0+(4)(6)+0-0]}

\pink\leadsto\sf{\dfrac{1}{2}[0+24+0-0]}

\pink\leadsto \sf{\dfrac{1}{2}[24+0-0]}

\pink\leadsto\sf{\dfrac{1}{2}[24+0]}

\pink\leadsto\sf{\dfrac{1}{2}[24]}

\pink\leadsto\sf{\dfrac{1}{2}\times\dfrac{24}{1} }

\pink\leadsto\sf{\dfrac{1\times24}{2\times1} }

\pink\leadsto \sf{\dfrac{24}{2} }

\sf\leadsto \underline{\boxed{\pink{\mathfrak{12 \:unit^{2} }}}}

∴ Area of the triangle = \sf{ 12\:unit^{2} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions