Math, asked by Anonymous, 9 months ago

The area of an equilateral triangle having altitude of 3 cm is: x^{2} cm^{2} \\3\sqrt{3} cm^{2} \\\sqrt{3 } } cm^{2} \\\\7\sqrt{3} cm^{2}

Answers

Answered by AdorableMe
88

Given

An equilateral triangle ABC with altitude 3 cm.

To Find

The area of the equilateral triangle ABC.

Solution

\bigstar \underline{\underline{\sf{DIAGRAM:-}}}

\setlength{\unitlength}{20} \begin{picture}(6,6)\put(5,1){\line(1,0){3.5}}\put(5,1){\line(0,1){3.5}}\put(5,4.5){\line(1,-1){3.5}} \put(5,1){\line(-1,0){3.5}}\put(5,4.5){\line(-1,-1){3.5}}\put(5.5,1){\line(0,1){0.4}}\put(4.5,1){\line(0,1){0.4}}\put(4.5,1.4){\line(1,0){1}}\put(4.75,0.5){ $ \bf C $ }\put(8.25,0.5){$ \bf D $}\put(1,0.5){$ \bf B $}\put(5,4.75){$ \bf A $}\put(5,2.75){ $ \tt 3 \: cm $ }\end{picture}

We know,

♣ Altitude of an equilateral triangle,

\sf{h=\dfrac{1}{2}\times \sqrt{3} \times a }

\sf{\longrightarrow 3=\dfrac{1}{2} \times \sqrt{3} \times a}\\\\\sf{\longrightarrow 6=\sqrt{3}a}\\\\\sf{\longrightarrow a=\dfrac{6}{\sqrt{3} } }\\\\\sf{\longrightarrow a=\dfrac{2 \times 3}{\sqrt{3}} }\\\\\sf{\longrightarrow a=2\sqrt{3}}

\rule{100}2

Now we know for an equilateral triangle :-

\sf{Area,\ A = \dfrac{\sqrt{3}}{4}a^2 }\\\\\sf{\longrightarrow A=\dfrac{\sqrt{3} }{4} (2\sqrt{3} )^2}\\\\\sf{\longrightarrow A=\dfrac{\sqrt{3}}{4}\times12 }\\\\\boxed{\sf{\longrightarrow A=3\sqrt{3}\ cm^2 }}

Therefore, the area of the equilateral triangle with altitude of 3 cm is 3√3 cm².


mysticd: no need of writing ordered pairs .
mysticd: apply formula directly , we can get area.
Answered by BrainlyIAS
30

Answer

  • Option 2 is correct
  • 3√3 cm²

Given

  • Altitude of an equilateral triangle is 3 cm

To Find

  • Area of an equilateral triangle

Concept Used

\boxed{\begin{minipage}{7cm}  \bf \bigstar \;\; $Pythagoras\ Theorem$\\\\\bf \bigstar \;\; (Opp.side)^2+(Adj.side)^2=(Hyp.)^2\\\\\bf \bigstar \;\; Area\ of\ triangle\\\\\bf \bigstar \;\; \dfrac{1}{2}\times base \times height \end{minipage}}

Solution

Altitude of an equilateral triangle , h = 3 cm

Actually , Area of an equilateral triangle is ,

\bigstar \;\; \bf A=\dfrac{\sqrt{3}}{4}x^2

where , x is side of an equilateral triangle .

But here side of equilateral triangle is not given .

So , convert the area of an equilateral triangle interms of altitude of the triangle .

Find attachment for diagram .

Apply Pythgoras theorem for right angled triangle .

\rm \implies h^2+\bigg(\dfrac{x}{2}\bigg)^2=x^2\\\\\implies \rm h^2=x^2-\dfrac{x^2}{4}\\\\\implies \rm h^2=\dfrac{3x^2}{4}\\\\\implies \rm h=\dfrac{\sqrt{3}x}{2}\\\\\implies \rm x=\dfrac{2h}{\sqrt{3}}

Now , apply area of normal triangle .

\implies \rm Area=\dfrac{1}{2}\times Base \times Height\\\\\implies \rm Area=\dfrac{1}{2}\times x\times h\\\\\implies \rm Area=\dfrac{1}{2}\times \dfrac{2h}{\sqrt{3}}\times h\;\;[Since,we\ find\ above]\\\\\implies \bf Area=\dfrac{h^2}{\sqrt{3}}\ \;\;\bigstar

Now sub. value of altitude , h in the triangle . [ h = 3 cm ]\implies \rm Area=\dfrac{(3)^2}{\sqrt{3}}\\\\\implies \rm Area=\dfrac{9}{\sqrt{3}}\\\\\implies \rm Area=\dfrac{3\times 3}{\sqrt{3}}\\\\\implies \rm Area=\dfrac{3 \times \sqrt{3}\times \cancel{\sqrt{3}}}{\cancel{\sqrt{3}}}\\\\\implies \bf Area=3\sqrt{3}\ cm^2\ \; \bigstar

( Or ) [ Easy method ]

Find attachment

Apply trigonometric function sine .

\implies \rm sin\ 60=\dfrac{h}{x}\\\\\implies \rm \dfrac{\sqrt{3}}{2}=\dfrac{3}{x}\ [Given\ h=3]\\\\\implies \rm x=2\sqrt{3}

Now , Apply formula for equilateral triangle .

\implies \rm Area=\dfrac{\sqrt{3}}{4}x^2\\\\\implies \rm Area=\dfrac{\sqrt{3}}{4}(2\sqrt{3})^2\\\\\implies \rm Area=\dfrac{\sqrt{3}}{4}\times 12\\\\\implies \bf Area=3\sqrt{3} \;\; \bigstar

Attachments:
Similar questions