Math, asked by prakashchand809, 4 months ago

the area of an isosceles triangle base 2cm and the length of one of the equal sides 4cm ​

Answers

Answered by BawliBalika
171

Correct Question:

find the area of the isosceles triangle with base 2cm and length of one of the equal side 4cm

Given:

base of the isosceles triangle = 2cm

length of one of the side = 4cm

To Find:

area of the isosceles triangle

Solution:

We know that:

{\boxed{\sf{\purple{in\: isosceles\: triangle,\:two\:sides\:are\:equal}}}}

So,the Sides are:

• a = 2cm

• b = 4cm

• c = 4cm

therefore,

\large\sf{ Side\: = \frac{a + b + c}{2}}

\large\implies\sf{ \frac{2 + 4 + 4}{2}}

\large\implies\sf{ \frac{10}{2}}

\large\implies\sf\underline\orange{5}

Now,area of the isosceles triangle:

{\boxed{\sf{\color{red}{area \:  =  \sqrt{s(s - a)(s - b)(s - c)}}}}}

 \sf \: area \:  =  \sqrt{5 \times (5 - 2)(5 - 4)(5 - 4)}

 \sf \: area \:  =  \sqrt{5 \times 3 \times 1 \times 1}

 \sf \: area \:  =  1\sqrt{15}

 \sf \: area \:  = 15 {cm}^{2}

Hence:

the area of the isosceles triangle is 15cm²

Answered by Anonymous
14

Answer:

Given:-

  • base of the isosceles triangle = 2cm

  • length of one of the side = 4cm

To Find:-

  • area of the isosceles triangle

Solution:-

\begin{gathered}  \sf \:   s=\frac{4 + 4 + 2}{2} =5\end{gathered}

Δ=  \sf\sqrt{s(s - a)(s - b)(s - b)}

  \sf \: \sf \: area \: = \sqrt{5 \times (5 - 2)(5 - 4)(5 - 4)}

Similar questions