Math, asked by mahendar27g, 1 year ago

the area of equilateral triangle is 64 x 3 square root CM square find the length of each of a triangle

Answers

Answered by sachin1153
1
hello friend!!!!

here is ur answer!!!!
\begin{lgathered}area \: of \: equilateral \: triangle = ( \sqrt{3} \div 4) {side}^{2} \\ 64 \sqrt{3} = ( \sqrt{3} \div 4) {side}^{2} \\ 64 \sqrt{3} \times (4 \div \sqrt{3} ) = {side}^{2} \\ \sqrt{3} \: canceled \\ 64 \times 4 = {side}^{2} \\ 256 = {side}^{2} \\ side = \sqrt{256} \\ side = 16cm\end{lgathered}areaofequilateraltriangle=(3​÷4)side2643​=(3​÷4)side2643​×(4÷3​)=side23​canceled64×4=side2256=side2side=256​side=16cm​
I hope you will understand

mahendar27g: thanks
Answered by TeenTitansGo
1

\mathsf{Area  \: of  \: the  \: equilateral  \: triangle = \dfrac{  \sqrt{3}  }{4}\times side^{2}}


In the question area of the equilateral triangle is 64√3 cm² , therefore √3 / 4 × side² will be equal to 64√3 cm².



 \mathsf{ \dfrac{ \sqrt{3}} { 4 }   \times  {side}^{2}  = 64 \sqrt{3} c {m}^{2} } \\  \\  \\  \mathsf{ \sqrt{3}  \times  \frac{1}{4}  \times side {}^{2}  = 64 \times  \sqrt{3}   { \: cm}^{2} }


 \mathsf{ \dfrac{1}{4}   \times  {side}^{2}  = 64 \: cm {}^{2} } \\  \\  \\  \mathsf{ {side}^{2}  = 64 \times 4 \: cm { }^{2} } \\  \\  \mathsf{side =  \sqrt{4 \times 64  \: c {m}^{2}} }

 \mathsf{side = 2 \times 8 \: cm} \\    \\  \mathsf{side = 16\: cm}




 \mathsf{Therefore \:  length \:  of  \: each \:  of \:  the  \: side} \\  \mathsf{  of  \: the  \: equilateral  \: triangle \:  is \:  16 \:  cm.}
Similar questions