Math, asked by varshauk, 1 year ago

the area of largest triangle that can be inscribed in a semicircle of radius R centimetre is
A) r^2
B)(r/2)^2
C)r root 2
D)r​

Answers

Answered by adityarajput66
0

option b is correct


varshauk: how??
Anonymous: you got your answer dude
varshauk: no bro.. still in confusion
Anonymous: not bro sis
varshauk: k. sry
Anonymous: It's k
Answered by sagarmankoti
3
Let the radius of the semicircle be 'r'

We know that angle subtended by a diameter to any point of a circle is 90°. So angle BAC=90°.

Using Pythagoras in ∆ABC,

AB = \sqrt{ {r}^{2} + {r}^{2} } = \sqrt{2 {r}^{2} } = r \sqrt{2}

Similarly, AC= r\sqrt{2}

Now,

Area \: of \: the \: triangle = \frac{1}{2} bh = \frac{1}{2} \times r \sqrt{2} \times r \sqrt{2} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{2 {r}^{2} }{2} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = {r}^{2}

So the correct answer is option (a)  {r}^{2}
Attachments:
Similar questions