Physics, asked by oldmanxavier, 1 year ago

The area of parallelogram represented by the vectors A=2i^ + 3j^ and B= i^ + 4j^ is :- (A) 14 units (B) 7.5 unit (C) 10 unit (D)5 unit. Please explain as well if you can

Answers

Answered by siddhartharao77
139
Given A = 2i+3j and B = i+4j .

Area of paralleogram A x B = (2i+3j+0k) x(i+4j+0k) 

For  i component we have,

(3 * 0) -  (4 * 0) = 0

For j component we have,

(0 * 2) - (1 * 0) = 0

For k component we have,

(2 * 4) - (1 * 3) = 5.

Now take the magnitude of this vector to find the area of the parallelogram:

A * B = Whole root of 0^2 + 0^2 + 5^2

         = 0 + 0 + 5(Square and root will be cancelled)

         = 5 units.


Hope this helps!


Answered by talasilavijaya
3

Answer:

Area of parallelogram formed by two vectors A and B is 5units.

Explanation:

Given \vec A =2\hat{i}+3\hat{j} and \vec A =\hat{i}+4\hat{j}

Area of parallelogram is \big| \vec A \times\vec B\big|

    \vec A \times\vec B=\left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\2&3&0\\1&4&0\end{array}\right|

               =\big[ (3\times0)-(4\times0)\big]\hat{i}- \big[ (2\times0)-(1\times0)\big]\hat{j}+ \big[ (2\times4)-(1\times3)\big]\hat{k}

               = \big[8-3\big]\hat{k}=5\hat{k}

Magnitude of \vec A \times\vec B is   \big| \vec A \times\vec B\big|=\sqrt{0^{2} +0^{2}+ 5^{2} }

                                                    =\sqrt{ 5^{2} }=5units

Therefore, area of parallelogram formed by the given vectors is 5units.

Similar questions