Math, asked by meenakshi794, 1 month ago

the area of Pentagon whose vertices are (4,1) (3,6) (-5,1) (-3,-3)and (-3,0) is​

Answers

Answered by DeeznutzUwU
2

Answer:

30 sq.units

Step-by-step explanation:

We know that for a pentagon of sides

(x_1,y_1)

(x_2,y_2)

(x_3,y_3)

(x_4,y_4)

(x_5,y_5)

Its Area = \frac{1}{2}|(x_1y_2+x_2y_3 +x_3y_4+x_4y_5+x_5y_1)-(y_1x_2+y_2x_3+y_3x_4+y_4x_5+y_5x_1)|

⇒ In our question

(x_1,y_1) = (4,1)

(x_2,y_2)= (3,6)

(x_3,y_3) = (-5,1)

(x_4,y_4) = (-3,-3)

(x_5,y_5) = (-3,0)

⇒ Its Area = \frac{1}{2} |[(4)(6)+(3)(1)+(-5)(-3)+(-3)(0)+(-3)(1)]-[(1)(3)+(6)(-5)+(1)(-3)+(-3)(-3)+(0)(4)]

\frac{1}{2} |(24+3+15+0-3)-(3-30-3+9+0)|

\frac{1}{2} |39 + 21|

\frac{1}{2} |60|

\frac{1}{2} *60 = 30sq.units

Similar questions